Processing math: 16%

Lie algebra sp(10), type C15
Semisimple complex Lie subalgebras

sp(10), type C15
Structure constants and notation.
Root subalgebras / root subsystems.
sl(2)-subalgebras.
Semisimple subalgebras.

Page generated by the calculator project.
Up to linear equivalence, there are total 119 semisimple subalgebras (including the full subalgebra). The subalgebras are ordered by rank, Dynkin indices of simple constituents and dimensions of simple constituents.
The upper index indicates the Dynkin index, the lower index indicates the rank of the subalgebra. Generation comments.
Computation time in seconds: 7845.16.
18936120030 total arithmetic operations performed = 18707885725 additions and 228234305 multiplications.
The base field over which the subalgebras were realized is: Q
Number of root subalgebras other than the Cartan and full subalgebra: 34
Number of sl(2)'s: 23
Subalgebra A11C15
1 out of 119
Subalgebra type: A11 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Centralizer: C14 .
The semisimple part of the centralizer of the semisimple part of my centralizer: A11
Basis of Cartan of centralizer: 4 vectors: (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: 2A11 , A21+A11 , A31+A11 , A41+A11 , A81+A11 , A91+A11 , A101+A11 , A111+A11 , A121+A11 , A201+A11 , A351+A11 , A361+A11 , A841+A11 , 3A11 , A21+2A11 , 2A21+A11 , A31+2A11 , 2A41+A11 , A81+2A11 , A81+A31+A11 , A81+A41+A11 , A91+A31+A11 , A101+2A11 , A101+A21+A11 , 2A101+A11 , A111+2A11 , A351+2A11 , B12+A11 , A22+A11 , B22+A11 , 4A11 , A21+3A11 , 3A41+A11 , A81+A31+2A11 , A101+3A11 , B12+2A11 , B12+A21+A11 , B12+A101+A11 , A22+2A11 , C13+A11 , A23+A11 , 5A11 , B12+3A11 , 2B12+A11 , C13+2A11 , C14+A11 .

Elements Cartan subalgebra scaled to act by two by components: A11: (2, 2, 2, 2, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: g25
Positive simple generators: g25
Cartan symmetric matrix: (2)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (2)
Decomposition of ambient Lie algebra: V2ω18Vω136V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). V2ψ3+4ψ4Vψ1ψ3+2ψ4Vω1ψ3+2ψ4V2ψ1Vω1+ψ1V2ω1Vψ2+2ψ4Vψ1+ψ2ψ3+2ψ4Vψ1ψ2ψ3+2ψ4Vψ22ψ3+2ψ4Vψ1ψ2+ψ3Vω1ψ2+ψ3Vψ2Vω1ψ1+ψ2V2ψ1ψ2Vω1+ψ1ψ2Vψ1+ψ2ψ3Vω1+ψ2ψ3Vψ1ψ3+2ψ4V2ψ2+2ψ3Vψ1+ψ3Vψ12ψ2+ψ3V2ψ1+2ψ24V0Vω1ψ1V2ψ12ψ2Vψ1+2ψ2ψ3Vψ1ψ3V2ψ22ψ3Vψ1+ψ32ψ4Vω1+ψ32ψ4Vψ1ψ2+ψ3V2ψ1+ψ2Vψ2Vψ1+ψ2ψ3Vψ2+2ψ32ψ4Vψ1+ψ2+ψ32ψ4Vψ1ψ2+ψ32ψ4Vψ22ψ4V2ψ1Vψ1+ψ32ψ4V2ψ34ψ4
Made total 280 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A21C15
2 out of 119
Subalgebra type: A21 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Centralizer: C13 + T1 (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: B12
Basis of Cartan of centralizer: 4 vectors: (1, 0, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: A21+A11 , 2A21 , A31+A21 , A81+A21 , A101+A21 , A111+A21 , A351+A21 , A21+2A11 , 2A21+A11 , A81+A31+A21 , A101+A21+A11 , B12+A21 , A22+A21 , A21+3A11 , B12+A21+A11 , C13+A21 .

Elements Cartan subalgebra scaled to act by two by components: A21: (2, 4, 4, 4, 2): 4
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: g24
Positive simple generators: g24
Cartan symmetric matrix: (1)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (4)
Decomposition of ambient Lie algebra: 3V2ω112Vω122V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). V2ω1+2ψ1Vω1+ψ1ψ3+2ψ4Vω1+ψ1+ψ2V2ψ3+4ψ4Vψ2ψ3+2ψ4Vω1+ψ1ψ2+ψ3V2ψ2V2ω1Vω1+ψ1+ψ2ψ3Vψ2+2ψ4Vω1ψ1ψ3+2ψ4Vψ22ψ3+2ψ4Vψ3Vω1ψ1+ψ2Vω1+ψ1ψ2V2ψ2ψ3Vω1+ψ1+ψ32ψ4Vψ2ψ3+2ψ4V2ψ2+2ψ3Vω1ψ1ψ2+ψ34V0V2ω12ψ1Vω1ψ1+ψ2ψ3V2ψ22ψ3Vψ2+ψ32ψ4V2ψ2+ψ3Vω1ψ1ψ2Vψ3Vψ2+2ψ32ψ4Vω1ψ1+ψ32ψ4Vψ22ψ4V2ψ2Vψ2+ψ32ψ4V2ψ34ψ4
Made total 14342990418 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A31C15
3 out of 119
Subalgebra type: A31 (click on type for detailed printout).
Centralizer: B12+A81 .
The semisimple part of the centralizer of the semisimple part of my centralizer: A31
Basis of Cartan of centralizer: 3 vectors: (1, 0, 0, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: A31+A11 , A31+A21 , A81+A31 , A91+A31 , A101+A31 , A101+A31 , A181+A31 , A31+2A11 , A81+A31+A11 , A81+A31+A21 , A91+A31+A11 , A101+A81+A31 , B12+A31 , A81+A31+2A11 , B12+A81+A31 .

Elements Cartan subalgebra scaled to act by two by components: A31: (2, 4, 6, 6, 3): 6
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: g19+g24
Positive simple generators: g24+g19
Cartan symmetric matrix: (2/3)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (6)
Decomposition of ambient Lie algebra: 6V2ω112Vω113V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). V2ω1+2ψ1Vω1+ψ1ψ2+2ψ3Vω1+ψ1+ψ2V2ω1+ψ1V2ψ2+4ψ3V2ψ3Vω1ψ2+2ψ3V2ψ2Vω1+ψ22V2ω1Vω1ψ1ψ2+2ψ3Vω1ψ1+ψ2Vψ1V2ω1ψ1Vω1+ψ1ψ2Vω1+ψ1+ψ22ψ3V2ψ2+2ψ33V0V2ω12ψ1Vω1ψ2V2ψ22ψ3Vω1+ψ22ψ3Vψ1Vω1ψ1ψ2Vω1ψ1+ψ22ψ3V2ψ2V2ψ3V2ψ24ψ3
Made total 1235361456 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A41C15
4 out of 119
Subalgebra type: A41 (click on type for detailed printout).
Centralizer: 2A41+A11 .
The semisimple part of the centralizer of the semisimple part of my centralizer: A41
Basis of Cartan of centralizer: 3 vectors: (1, 0, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: A41+A11 , 2A41 , A51+A41 , A81+A41 , A91+A41 , 2A41+A11 , 3A41 , A51+2A41 , A81+A41+A11 , 3A41+A11 .

Elements Cartan subalgebra scaled to act by two by components: A41: (2, 4, 6, 8, 4): 8
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: g16+g24
Positive simple generators: g24+g16
Cartan symmetric matrix: (1/2)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (8)
Decomposition of ambient Lie algebra: 10V2ω18Vω19V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). V4ψ3Vω1+ψ2+2ψ3Vω1+ψ1+2ψ3V2ω1+2ψ2V2ω1+ψ1+ψ2V2ω1+2ψ1Vω1ψ1+2ψ3Vω1ψ2+2ψ3Vψ1+ψ2V2ω1ψ1+ψ22V2ω1V2ω1+ψ1ψ2Vψ1+ψ23V0V2ω12ψ1Vψ1ψ2V2ω1ψ1ψ2V2ω12ψ2Vω1+ψ22ψ3Vω1+ψ12ψ3Vψ1ψ2Vω1ψ12ψ3Vω1ψ22ψ3V4ψ3
Made total 2345117399 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A51C15
5 out of 119
Subalgebra type: A51 (click on type for detailed printout).
Centralizer: B42 .
The semisimple part of the centralizer of the semisimple part of my centralizer: A51
Basis of Cartan of centralizer: 2 vectors: (1, 0, 0, 0, 0), (0, 0, 1, 0, 0)
Contained up to conjugation as a direct summand of: A51+A41 , A81+A51 , A401+A51 , A51+2A41 , B42+A51 .

Elements Cartan subalgebra scaled to act by two by components: A51: (2, 4, 6, 8, 5): 10
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: g5+g16+g24
Positive simple generators: g24+g16+g5
Cartan symmetric matrix: (2/5)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (10)
Decomposition of ambient Lie algebra: 15V2ω110V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). V2ω1+2ψ2V2ω1+ψ1+ψ2V2ω1+2ψ1V2ω1+ψ2V2ω1+ψ1Vψ1+ψ2V2ω1ψ1+ψ23V2ω1V2ω1+ψ1ψ2Vψ2Vψ1V2ω1ψ1V2ω1ψ2Vψ1+ψ22V0V2ω12ψ1Vψ1ψ2V2ω1ψ1ψ2V2ω12ψ2Vψ1Vψ2Vψ1ψ2
Made total 190206646 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A81C15
6 out of 119
Subalgebra type: A81 (click on type for detailed printout).
Centralizer: B12+A31 .
The semisimple part of the centralizer of the semisimple part of my centralizer: A81
Basis of Cartan of centralizer: 3 vectors: (0, 0, 1, 0, 0), (1, 0, 0, 1, 0), (2, 0, 0, 0, -1)
Contained up to conjugation as a direct summand of: A81+A11 , A81+A21 , A81+A31 , A81+A41 , A81+A51 , A101+A81 , A131+A81 , A81+2A11 , A81+A31+A11 , A81+A31+A21 , A81+A41+A11 , A101+A81+A31 , B12+A81 , A81+A31+2A11 , B12+A81+A31 .

Elements Cartan subalgebra scaled to act by two by components: A81: (4, 8, 8, 8, 4): 16
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: g11+g17
Positive simple generators: 2g17+2g11
Cartan symmetric matrix: (1/4)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (16)
Decomposition of ambient Lie algebra: 3V4ω19V2ω113V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). V4ω1+2ψ2+4ψ3V2ψ2+4ψ3V2ω1+ψ1+ψ2+2ψ3V2ω1ψ1+2ψ2+2ψ3V2ω1+ψ1+2ψ3V2ω1ψ1+ψ2+2ψ3V4ω1V2ψ1V2ω1Vψ2V2ψ1ψ2V2ψ1+2ψ23V0V2ψ12ψ2V2ω1+ψ1ψ22ψ3V2ψ1+ψ2Vψ2V2ω1ψ12ψ3V2ω1+ψ12ψ22ψ3V2ψ1V2ω1ψ1ψ22ψ3V4ω12ψ24ψ3V2ψ24ψ3
Made total 9979170 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A91C15
7 out of 119
Subalgebra type: A91 (click on type for detailed printout).
Centralizer: A31+A11 .
The semisimple part of the centralizer of the semisimple part of my centralizer: A81+A11
Basis of Cartan of centralizer: 2 vectors: (1, 0, 0, 1, 0), (2, 0, 0, 0, -1)
Contained up to conjugation as a direct summand of: A91+A11 , A91+A31 , A91+A41 , A91+A31+A11 .

Elements Cartan subalgebra scaled to act by two by components: A91: (4, 8, 10, 10, 5): 18
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: g11+g17+g19
Positive simple generators: g19+2g17+2g11
Cartan symmetric matrix: (2/9)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (18)
Decomposition of ambient Lie algebra: 3V4ω12V3ω16V2ω14Vω16V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). V4ω1+2ψ1+4ψ2V2ψ1+4ψ2V2ω1+2ψ1+2ψ2V3ω1+ψ1+2ψ2Vω1+ψ1+2ψ2V2ω1+2ψ2V4ω1V2ψ1Vω1+ψ12V2ω12V0Vω1ψ1V2ω12ψ2V3ω1ψ12ψ2V2ψ1Vω1ψ12ψ2V2ω12ψ12ψ2V4ω12ψ14ψ2V2ψ14ψ2
Made total 5052616 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A101C15
8 out of 119
Subalgebra type: A101 (click on type for detailed printout).
Centralizer: A31 + T1 (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: B12+A81
Basis of Cartan of centralizer: 2 vectors: (0, 0, 1, 0, 0), (2, 0, 0, 0, -1)
Contained up to conjugation as a direct summand of: A101+A31 .

Elements Cartan subalgebra scaled to act by two by components: A101: (4, 8, 10, 12, 6): 20
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: g11+g16+g17
Positive simple generators: 2g17+g16+2g11
Cartan symmetric matrix: (1/5)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (20)
Decomposition of ambient Lie algebra: 3V4ω14V3ω14V2ω14Vω14V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). V4ω1+4ψ2V3ω1+ψ1+2ψ2V4ψ2Vω1+ψ1+2ψ2V3ω1ψ1+2ψ2V2ω1+2ψ1V4ω1Vω1ψ1+2ψ22V2ω1V3ω1+ψ12ψ22V0V2ω12ψ1Vω1+ψ12ψ2V3ω1ψ12ψ2V4ω14ψ2Vω1ψ12ψ2V4ψ2
Made total 31058778 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A101C15
9 out of 119
Subalgebra type: A101 (click on type for detailed printout).
Centralizer: C13 .
The semisimple part of the centralizer of the semisimple part of my centralizer: B12
Basis of Cartan of centralizer: 3 vectors: (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: A101+A11 , A101+A21 , A101+A31 , A101+A81 , 2A101 , A111+A101 , A351+A101 , A101+2A11 , A101+A21+A11 , A101+A81+A31 , 2A101+A11 , B12+A101 , A22+A101 , A101+3A11 , B12+A101+A11 , C13+A101 .

Elements Cartan subalgebra scaled to act by two by components: A101: (6, 8, 8, 8, 4): 20
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: g1+g23
Positive simple generators: 4g23+3g1
Cartan symmetric matrix: (1/5)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (20)
Decomposition of ambient Lie algebra: V6ω16V3ω1V2ω121V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). V6ω1V3ω1ψ2+2ψ3V3ω1+ψ1V3ω1ψ1+ψ2V3ω1+ψ1ψ2V2ψ2+4ψ3Vψ1ψ2+2ψ3V2ψ1V2ω1V3ω1ψ1V3ω1+ψ22ψ3Vψ1+2ψ3Vψ12ψ2+2ψ3Vψ2V2ψ1ψ2Vψ1ψ2+2ψ3V2ψ1+2ψ23V0V2ψ12ψ2Vψ1+ψ22ψ3V2ψ1+ψ2Vψ2Vψ1+2ψ22ψ3Vψ12ψ3V2ψ1Vψ1+ψ22ψ3V2ψ24ψ3
Made total 1780 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A111C15
10 out of 119
Subalgebra type: A111 (click on type for detailed printout).
Centralizer: B12 .
The semisimple part of the centralizer of the semisimple part of my centralizer: C13
Basis of Cartan of centralizer: 2 vectors: (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: A111+A11 , A111+A21 , A111+A101 , A111+2A11 , B12+A111 .

Elements Cartan subalgebra scaled to act by two by components: A111: (6, 8, 10, 10, 5): 22
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: g1+g19+g23
Positive simple generators: 4g23+g19+3g1
Cartan symmetric matrix: (2/11)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (22)
Decomposition of ambient Lie algebra: V6ω1V4ω14V3ω13V2ω14Vω110V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). V6ω1V3ω1ψ1+2ψ2V3ω1+ψ1V4ω1V2ψ1+4ψ2V2ψ2Vω1ψ1+2ψ2V2ψ1Vω1+ψ13V2ω1V3ω1ψ1V3ω1+ψ12ψ2V2ψ1+2ψ22V0Vω1ψ1V2ψ12ψ2Vω1+ψ12ψ2V2ψ1V2ψ2V2ψ14ψ2
Made total 829374 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A121C15
11 out of 119
Subalgebra type: A121 (click on type for detailed printout).
Centralizer: A11 + T1 (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: C14
Basis of Cartan of centralizer: 2 vectors: (0, 0, 1, 0, 0), (0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: A121+A11 .

Elements Cartan subalgebra scaled to act by two by components: A121: (6, 8, 10, 12, 6): 24
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: g1+g16+g23
Positive simple generators: 4g23+g16+3g1
Cartan symmetric matrix: (1/6)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (24)
Decomposition of ambient Lie algebra: V6ω12V4ω12V3ω16V2ω14Vω14V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). V6ω1V3ω1+2ψ2V4ω1+ψ1V4ψ2Vω1+ψ1+2ψ2V2ω1+2ψ1V2ω1+ψ1V4ω1ψ1Vω1ψ1+2ψ22V2ω1V2ω1ψ1V3ω12ψ22V0V2ω12ψ1Vω1+ψ12ψ2Vω1ψ12ψ2V4ψ2
Made total 52399050 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A131C15
12 out of 119
Subalgebra type: A131 (click on type for detailed printout).
Centralizer: A81 .
The semisimple part of the centralizer of the semisimple part of my centralizer: B12+A31
Basis of Cartan of centralizer: 1 vectors: (0, 0, 0, 1, 0)
Contained up to conjugation as a direct summand of: A131+A81 .

Elements Cartan subalgebra scaled to act by two by components: A131: (6, 8, 10, 12, 7): 26
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: g1+g9+g19+g23
Positive simple generators: 4g23+g19+g9+3g1
Cartan symmetric matrix: (2/13)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (26)
Decomposition of ambient Lie algebra: V6ω13V4ω110V2ω13V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). V6ω1V4ω1+ψV2ω1+2ψV4ω12V2ω1+ψV4ω1ψ4V2ω1Vψ2V2ω1ψV0V2ω12ψVψ
Made total 54301561 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A181C15
13 out of 119
Subalgebra type: A181 (click on type for detailed printout).
Centralizer: A31 .
The semisimple part of the centralizer of the semisimple part of my centralizer: B12+A81
Basis of Cartan of centralizer: 1 vectors: (0, 2, 0, 0, -1)
Contained up to conjugation as a direct summand of: A181+A31 .

Elements Cartan subalgebra scaled to act by two by components: A181: (6, 10, 14, 16, 8): 36
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: g8+g10+g13+g15
Positive simple generators: 2g15+4g13+3g10+2g8
Cartan symmetric matrix: (1/9)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (36)
Decomposition of ambient Lie algebra: V6ω12V5ω13V4ω12V3ω12V2ω12Vω13V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). V4ω1+4ψV5ω1+2ψV6ω1V3ω1+2ψV4ψV4ω1Vω1+2ψV5ω12ψ2V2ω1V3ω12ψV0V4ω14ψVω12ψV4ψ
Made total 1042253 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A201C15
14 out of 119
Subalgebra type: A201 (click on type for detailed printout).
Centralizer: A11 + T1 (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: C14
Basis of Cartan of centralizer: 2 vectors: (1, 0, -1, 0, 0), (0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: A201+A11 .

Elements Cartan subalgebra scaled to act by two by components: A201: (6, 12, 14, 16, 8): 40
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: g2+g10+g16
Positive simple generators: 4g16+3g10+3g2
Cartan symmetric matrix: (1/10)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (40)
Decomposition of ambient Lie algebra: 3V6ω1V4ω14V3ω13V2ω14V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). V6ω1+2ψ1V3ω1+ψ1+2ψ2V6ω1V4ψ2V3ω1ψ1+2ψ2V2ω1+2ψ1V4ω1V6ω12ψ1V2ω1V3ω1+ψ12ψ22V0V2ω12ψ1V3ω1ψ12ψ2V4ψ2
Made total 28767865 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A211C15
15 out of 119
Subalgebra type: A211 (click on type for detailed printout).
Centralizer: T1 (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: C15
Basis of Cartan of centralizer: 1 vectors: (1, 0, -1, 0, 0)

Elements Cartan subalgebra scaled to act by two by components: A211: (6, 12, 14, 16, 9): 42
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: g2+g5+g10+g16
Positive simple generators: 4g16+3g10+g5+3g2
Cartan symmetric matrix: (2/21)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (42)
Decomposition of ambient Lie algebra: 3V6ω13V4ω16V2ω1V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). V6ω1+2ψV6ω1V4ω1+ψV2ω1+2ψV4ω1V6ω12ψV2ω1+ψV4ω1ψ2V2ω1V2ω1ψV0V2ω12ψ
Made total 44412910 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A351C15
16 out of 119
Subalgebra type: A351 (click on type for detailed printout).
Centralizer: B12 .
The semisimple part of the centralizer of the semisimple part of my centralizer: C13
Basis of Cartan of centralizer: 2 vectors: (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: A351+A11 , A351+A21 , A351+A101 , A351+2A11 , B12+A351 .

Elements Cartan subalgebra scaled to act by two by components: A351: (10, 16, 18, 18, 9): 70
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: g1+g2+g19
Positive simple generators: 9g19+8g2+5g1
Cartan symmetric matrix: (2/35)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (70)
Decomposition of ambient Lie algebra: V10ω1V6ω14V5ω1V2ω110V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). V10ω1V5ω1ψ1+2ψ2V5ω1+ψ1V6ω1V5ω1ψ1V5ω1+ψ12ψ2V2ψ1+4ψ2V2ψ2V2ψ1V2ω1V2ψ1+2ψ22V0V2ψ12ψ2V2ψ1V2ψ2V2ψ14ψ2
Made total 7217 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A361C15
17 out of 119
Subalgebra type: A361 (click on type for detailed printout).
Centralizer: A11 .
The semisimple part of the centralizer of the semisimple part of my centralizer: C14
Basis of Cartan of centralizer: 1 vectors: (0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: A361+A11 .

Elements Cartan subalgebra scaled to act by two by components: A361: (10, 16, 18, 20, 10): 72
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: g1+g2+g13+g19
Positive simple generators: 9g19+g13+8g2+5g1
Cartan symmetric matrix: (1/18)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (72)
Decomposition of ambient Lie algebra: V10ω12V6ω12V5ω1V4ω12V2ω12Vω13V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). V10ω1V5ω1+2ψ2V6ω1V4ψV4ω1Vω1+2ψV5ω12ψ2V2ω1V0Vω12ψV4ψ
Made total 1614898 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A371C15
18 out of 119
Subalgebra type: A371 (click on type for detailed printout).
Centralizer: T1 (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: C15
Basis of Cartan of centralizer: 1 vectors: (0, 0, 0, 1, 0)

Elements Cartan subalgebra scaled to act by two by components: A371: (10, 16, 18, 20, 11): 74
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: g1+g2+g9+g19
Positive simple generators: 9g19+g9+8g2+5g1
Cartan symmetric matrix: (2/37)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (74)
Decomposition of ambient Lie algebra: V10ω13V6ω12V4ω14V2ω1V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). V10ω1V6ω1+ψV6ω1V4ω1+ψV6ω1ψV2ω1+2ψV4ω1ψ2V2ω1V0V2ω12ψ
Made total 19693568 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A401C15
19 out of 119
Subalgebra type: A401 (click on type for detailed printout).
Centralizer: A51 .
The semisimple part of the centralizer of the semisimple part of my centralizer: B42
Basis of Cartan of centralizer: 1 vectors: (2, 0, -2, 0, 1)
Contained up to conjugation as a direct summand of: A401+A51 .

Elements Cartan subalgebra scaled to act by two by components: A401: (8, 16, 20, 24, 12): 80
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: g2+g4+g10+g12
Positive simple generators: 6g12+4g10+6g4+4g2
Cartan symmetric matrix: (1/20)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (80)
Decomposition of ambient Lie algebra: 3V8ω1V6ω13V4ω1V2ω13V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). V8ω1+4ψV4ω1+4ψV8ω1V6ω1V4ψV4ω1V8ω14ψV2ω1V0V4ω14ψV4ψ
Made total 2361636 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A451C15
20 out of 119
Subalgebra type: A451 (click on type for detailed printout).
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: C15

Elements Cartan subalgebra scaled to act by two by components: A451: (10, 16, 22, 24, 13): 90
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: g1+g3+5/2g7+g9+g11
Positive simple generators: 25/4g13+11/2g11+13/2g915/2g8+g7+g6+g5+3g3+5g1
Cartan symmetric matrix: (2/45)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (90)
Decomposition of ambient Lie algebra: V10ω1V8ω13V6ω1V4ω13V2ω1
Made total 5158931 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A841C15
21 out of 119
Subalgebra type: A841 (click on type for detailed printout).
Centralizer: A11 .
The semisimple part of the centralizer of the semisimple part of my centralizer: C14
Basis of Cartan of centralizer: 1 vectors: (0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: A841+A11 .

Elements Cartan subalgebra scaled to act by two by components: A841: (14, 24, 30, 32, 16): 168
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: g1+g2+g3+g13
Positive simple generators: 16g13+15g3+12g2+7g1
Cartan symmetric matrix: (1/42)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (168)
Decomposition of ambient Lie algebra: V14ω1V10ω12V7ω1V6ω1V2ω13V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). V14ω1V10ω1V7ω1+2ψV6ω1V7ω12ψV4ψV2ω1V0V4ψ
Made total 21932 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A851C^{1}_5
22 out of 119
Subalgebra type: \displaystyle A^{85}_1 (click on type for detailed printout).
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{85}_1: (14, 24, 30, 32, 17): 170
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: \displaystyle g_{-1}+g_{-2}+g_{-3}+g_{-5}+g_{-13}
Positive simple generators: \displaystyle 16g_{13}+g_{5}+15g_{3}+12g_{2}+7g_{1}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2/85\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}170\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{14\omega_{1}}\oplus V_{10\omega_{1}}\oplus V_{8\omega_{1}}\oplus 2V_{6\omega_{1}}\oplus 2V_{2\omega_{1}}
Made total 2630405 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{165}_1C^{1}_5
23 out of 119
Subalgebra type: \displaystyle A^{165}_1 (click on type for detailed printout).
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{165}_1: (18, 32, 42, 48, 25): 330
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: \displaystyle g_{-1}+g_{-2}+g_{-3}+g_{-4}+g_{-5}
Positive simple generators: \displaystyle 25g_{5}+24g_{4}+21g_{3}+16g_{2}+9g_{1}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2/165\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}330\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{18\omega_{1}}\oplus V_{14\omega_{1}}\oplus V_{10\omega_{1}}\oplus V_{6\omega_{1}}\oplus V_{2\omega_{1}}
Made total 56496 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra 2A^{1}_1C^{1}_5
24 out of 119
Subalgebra type: \displaystyle 2A^{1}_1 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle A^{1}_1 .
Centralizer: \displaystyle C^{1}_3 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle B^{1}_2
Basis of Cartan of centralizer: 3 vectors: (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \displaystyle 3A^{1}_1 , \displaystyle A^{2}_1+2A^{1}_1 , \displaystyle A^{3}_1+2A^{1}_1 , \displaystyle A^{8}_1+2A^{1}_1 , \displaystyle A^{10}_1+2A^{1}_1 , \displaystyle A^{11}_1+2A^{1}_1 , \displaystyle A^{35}_1+2A^{1}_1 , \displaystyle 4A^{1}_1 , \displaystyle A^{2}_1+3A^{1}_1 , \displaystyle A^{8}_1+A^{3}_1+2A^{1}_1 , \displaystyle A^{10}_1+3A^{1}_1 , \displaystyle B^{1}_2+2A^{1}_1 , \displaystyle A^{2}_2+2A^{1}_1 , \displaystyle 5A^{1}_1 , \displaystyle B^{1}_2+3A^{1}_1 , \displaystyle C^{1}_3+2A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{1}_1: (2, 2, 2, 2, 1): 2, \displaystyle A^{1}_1: (0, 2, 2, 2, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-25}, \displaystyle g_{-23}
Positive simple generators: \displaystyle g_{25}, \displaystyle g_{23}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & 0\\ 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & 0\\ 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{2}}\oplus V_{\omega_{1}+\omega_{2}}\oplus V_{2\omega_{1}}\oplus 6V_{\omega_{2}}\oplus 6V_{\omega_{1}}\oplus 21V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{-2\psi_{2}+4\psi_{3}}\oplus V_{\psi_{1}-\psi_{2}+2\psi_{3}}\oplus V_{\omega_{2}-\psi_{2}+2\psi_{3}}\oplus V_{\omega_{1}-\psi_{2}+2\psi_{3}} \oplus V_{2\psi_{1}}\oplus V_{\omega_{2}+\psi_{1}}\oplus V_{\omega_{1}+\psi_{1}}\oplus V_{2\omega_{2}}\oplus V_{\omega_{1}+\omega_{2}}\oplus V_{2\omega_{1}} \oplus V_{-\psi_{1}+2\psi_{3}}\oplus V_{\psi_{1}-2\psi_{2}+2\psi_{3}}\oplus V_{\psi_{2}}\oplus V_{\omega_{2}-\psi_{1}+\psi_{2}}\oplus V_{\omega_{1}-\psi_{1}+\psi_{2}} \oplus V_{2\psi_{1}-\psi_{2}}\oplus V_{\omega_{2}+\psi_{1}-\psi_{2}}\oplus V_{\omega_{1}+\psi_{1}-\psi_{2}}\oplus V_{-\psi_{1}-\psi_{2}+2\psi_{3}} \oplus V_{-2\psi_{1}+2\psi_{2}}\oplus 3V_{0}\oplus V_{\omega_{2}-\psi_{1}}\oplus V_{\omega_{1}-\psi_{1}}\oplus V_{2\psi_{1}-2\psi_{2}}\oplus V_{\psi_{1}+\psi_{2}-2\psi_{3}} \oplus V_{\omega_{2}+\psi_{2}-2\psi_{3}}\oplus V_{\omega_{1}+\psi_{2}-2\psi_{3}}\oplus V_{-2\psi_{1}+\psi_{2}}\oplus V_{-\psi_{2}} \oplus V_{-\psi_{1}+2\psi_{2}-2\psi_{3}}\oplus V_{\psi_{1}-2\psi_{3}}\oplus V_{-2\psi_{1}}\oplus V_{-\psi_{1}+\psi_{2}-2\psi_{3}} \oplus V_{2\psi_{2}-4\psi_{3}}
Made total 369 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{2}_1+A^{1}_1C^{1}_5
25 out of 119
Subalgebra type: \displaystyle A^{2}_1+A^{1}_1 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle A^{2}_1 .
Centralizer: \displaystyle B^{1}_2 + \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_3
Basis of Cartan of centralizer: 3 vectors: (1, 0, 0, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \displaystyle A^{2}_1+2A^{1}_1 , \displaystyle 2A^{2}_1+A^{1}_1 , \displaystyle A^{10}_1+A^{2}_1+A^{1}_1 , \displaystyle A^{2}_1+3A^{1}_1 , \displaystyle B^{1}_2+A^{2}_1+A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{2}_1: (2, 4, 4, 4, 2): 4, \displaystyle A^{1}_1: (0, 0, 2, 2, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-24}, \displaystyle g_{-19}
Positive simple generators: \displaystyle g_{24}, \displaystyle g_{19}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1 & 0\\ 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}4 & 0\\ 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{2}}\oplus 2V_{\omega_{1}+\omega_{2}}\oplus 3V_{2\omega_{1}}\oplus 4V_{\omega_{2}}\oplus 8V_{\omega_{1}}\oplus 11V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{2\omega_{1}+2\psi_{1}}\oplus V_{\omega_{1}+\psi_{1}-\psi_{2}+2\psi_{3}}\oplus V_{\omega_{1}+\psi_{1}+\psi_{2}}\oplus V_{\omega_{1}+\omega_{2}+\psi_{1}} \oplus V_{-2\psi_{2}+4\psi_{3}}\oplus V_{2\psi_{3}}\oplus V_{\omega_{2}-\psi_{2}+2\psi_{3}}\oplus V_{2\psi_{2}}\oplus V_{\omega_{2}+\psi_{2}} \oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{\omega_{1}-\psi_{1}-\psi_{2}+2\psi_{3}}\oplus V_{\omega_{1}-\psi_{1}+\psi_{2}} \oplus V_{\omega_{1}+\omega_{2}-\psi_{1}}\oplus V_{\omega_{1}+\psi_{1}-\psi_{2}}\oplus V_{\omega_{1}+\psi_{1}+\psi_{2}-2\psi_{3}} \oplus V_{-2\psi_{2}+2\psi_{3}}\oplus 3V_{0}\oplus V_{2\omega_{1}-2\psi_{1}}\oplus V_{\omega_{2}-\psi_{2}}\oplus V_{2\psi_{2}-2\psi_{3}} \oplus V_{\omega_{2}+\psi_{2}-2\psi_{3}}\oplus V_{\omega_{1}-\psi_{1}-\psi_{2}}\oplus V_{\omega_{1}-\psi_{1}+\psi_{2}-2\psi_{3}} \oplus V_{-2\psi_{2}}\oplus V_{-2\psi_{3}}\oplus V_{2\psi_{2}-4\psi_{3}}
Made total 117162364 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra 2A^{2}_1C^{1}_5
26 out of 119
Subalgebra type: \displaystyle 2A^{2}_1 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle A^{2}_1 .
Centralizer: \displaystyle A^{1}_1 + \displaystyle T_{2} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_4
Basis of Cartan of centralizer: 3 vectors: (1, 0, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \displaystyle 2A^{2}_1+A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{2}_1: (2, 4, 4, 4, 2): 4, \displaystyle A^{2}_1: (0, 0, 2, 4, 2): 4
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-24}, \displaystyle g_{-16}
Positive simple generators: \displaystyle g_{24}, \displaystyle g_{16}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1 & 0\\ 0 & 1\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}4 & 0\\ 0 & 4\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle 3V_{2\omega_{2}}\oplus 4V_{\omega_{1}+\omega_{2}}\oplus 3V_{2\omega_{1}}\oplus 4V_{\omega_{2}}\oplus 4V_{\omega_{1}}\oplus 5V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{4\psi_{3}}\oplus V_{\omega_{2}+\psi_{2}+2\psi_{3}}\oplus V_{\omega_{1}+\psi_{1}+2\psi_{3}}\oplus V_{2\omega_{2}+2\psi_{2}} \oplus V_{\omega_{1}+\omega_{2}+\psi_{1}+\psi_{2}}\oplus V_{2\omega_{1}+2\psi_{1}}\oplus V_{\omega_{1}-\psi_{1}+2\psi_{3}} \oplus V_{\omega_{2}-\psi_{2}+2\psi_{3}}\oplus V_{\omega_{1}+\omega_{2}-\psi_{1}+\psi_{2}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}} \oplus V_{\omega_{1}+\omega_{2}+\psi_{1}-\psi_{2}}\oplus 3V_{0}\oplus V_{2\omega_{1}-2\psi_{1}}\oplus V_{\omega_{1}+\omega_{2}-\psi_{1}-\psi_{2}} \oplus V_{2\omega_{2}-2\psi_{2}}\oplus V_{\omega_{2}+\psi_{2}-2\psi_{3}}\oplus V_{\omega_{1}+\psi_{1}-2\psi_{3}}\oplus V_{\omega_{1}-\psi_{1}-2\psi_{3}} \oplus V_{\omega_{2}-\psi_{2}-2\psi_{3}}\oplus V_{-4\psi_{3}}
Made total 147792114 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{3}_1+A^{1}_1C^{1}_5
27 out of 119
Subalgebra type: \displaystyle A^{3}_1+A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{3}_1 .
Centralizer: \displaystyle A^{8}_1+A^{1}_1 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle A^{3}_1+A^{1}_1
Basis of Cartan of centralizer: 2 vectors: (1, 0, 0, 0, 0), (0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \displaystyle A^{3}_1+2A^{1}_1 , \displaystyle A^{8}_1+A^{3}_1+A^{1}_1 , \displaystyle A^{9}_1+A^{3}_1+A^{1}_1 , \displaystyle A^{8}_1+A^{3}_1+2A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{3}_1: (2, 4, 6, 6, 3): 6, \displaystyle A^{1}_1: (0, 0, 0, 2, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-19}+g_{-24}, \displaystyle g_{-13}
Positive simple generators: \displaystyle g_{24}+g_{19}, \displaystyle g_{13}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2/3 & 0\\ 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}6 & 0\\ 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{2}}\oplus 3V_{\omega_{1}+\omega_{2}}\oplus 6V_{2\omega_{1}}\oplus 2V_{\omega_{2}}\oplus 6V_{\omega_{1}}\oplus 6V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{4\psi_{2}}\oplus V_{\omega_{1}+\psi_{1}+2\psi_{2}}\oplus V_{2\omega_{1}+2\psi_{1}}\oplus V_{\omega_{2}+2\psi_{2}}\oplus V_{\omega_{1}+2\psi_{2}} \oplus V_{\omega_{1}+\omega_{2}+\psi_{1}}\oplus V_{2\omega_{1}+\psi_{1}}\oplus V_{\omega_{1}-\psi_{1}+2\psi_{2}}\oplus V_{2\omega_{2}} \oplus V_{\omega_{1}+\omega_{2}}\oplus 2V_{2\omega_{1}}\oplus V_{\psi_{1}}\oplus V_{\omega_{1}+\omega_{2}-\psi_{1}}\oplus V_{2\omega_{1}-\psi_{1}} \oplus 2V_{0}\oplus V_{2\omega_{1}-2\psi_{1}}\oplus V_{\omega_{1}+\psi_{1}-2\psi_{2}}\oplus V_{-\psi_{1}}\oplus V_{\omega_{2}-2\psi_{2}} \oplus V_{\omega_{1}-2\psi_{2}}\oplus V_{\omega_{1}-\psi_{1}-2\psi_{2}}\oplus V_{-4\psi_{2}}
Made total 1299913 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{3}_1+A^{2}_1C^{1}_5
28 out of 119
Subalgebra type: \displaystyle A^{3}_1+A^{2}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{3}_1 .
Centralizer: \displaystyle A^{8}_1 + \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle B^{1}_2+A^{3}_1
Basis of Cartan of centralizer: 2 vectors: (1, 0, 0, 0, 0), (0, 0, 0, 1, 0)
Contained up to conjugation as a direct summand of: \displaystyle A^{8}_1+A^{3}_1+A^{2}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{3}_1: (2, 4, 6, 6, 3): 6, \displaystyle A^{2}_1: (0, 0, 0, 2, 2): 4
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-19}+g_{-24}, \displaystyle g_{-9}
Positive simple generators: \displaystyle g_{24}+g_{19}, \displaystyle g_{9}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2/3 & 0\\ 0 & 1\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}6 & 0\\ 0 & 4\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle 3V_{2\omega_{2}}\oplus 6V_{\omega_{1}+\omega_{2}}\oplus 6V_{2\omega_{1}}\oplus 4V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{2\omega_{2}+2\psi_{2}}\oplus V_{\omega_{1}+\omega_{2}+\psi_{1}+\psi_{2}}\oplus V_{2\omega_{1}+2\psi_{1}}\oplus V_{\omega_{1}+\omega_{2}+\psi_{2}} \oplus V_{2\omega_{1}+\psi_{1}}\oplus V_{\omega_{1}+\omega_{2}-\psi_{1}+\psi_{2}}\oplus V_{2\omega_{2}}\oplus 2V_{2\omega_{1}}\oplus V_{\omega_{1}+\omega_{2}+\psi_{1}-\psi_{2}} \oplus V_{\psi_{1}}\oplus V_{2\omega_{1}-\psi_{1}}\oplus V_{\omega_{1}+\omega_{2}-\psi_{2}}\oplus 2V_{0}\oplus V_{2\omega_{1}-2\psi_{1}} \oplus V_{\omega_{1}+\omega_{2}-\psi_{1}-\psi_{2}}\oplus V_{2\omega_{2}-2\psi_{2}}\oplus V_{-\psi_{1}}
Made total 7274345 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{4}_1+A^{1}_1C^{1}_5
29 out of 119
Subalgebra type: \displaystyle A^{4}_1+A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{4}_1 .
Centralizer: \displaystyle 2A^{4}_1 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle A^{4}_1+A^{1}_1
Basis of Cartan of centralizer: 2 vectors: (1, 0, 0, 0, 0), (0, 0, 1, 0, 0)
Contained up to conjugation as a direct summand of: \displaystyle 2A^{4}_1+A^{1}_1 , \displaystyle A^{8}_1+A^{4}_1+A^{1}_1 , \displaystyle 3A^{4}_1+A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{4}_1: (2, 4, 6, 8, 4): 8, \displaystyle A^{1}_1: (0, 0, 0, 0, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-16}+g_{-24}, \displaystyle g_{-5}
Positive simple generators: \displaystyle g_{24}+g_{16}, \displaystyle g_{5}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/2 & 0\\ 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}8 & 0\\ 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{2}}\oplus 4V_{\omega_{1}+\omega_{2}}\oplus 10V_{2\omega_{1}}\oplus 6V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{2\omega_{1}+2\psi_{2}}\oplus V_{2\omega_{1}+\psi_{1}+\psi_{2}}\oplus V_{2\omega_{1}+2\psi_{1}}\oplus V_{\omega_{1}+\omega_{2}+\psi_{2}} \oplus V_{\omega_{1}+\omega_{2}+\psi_{1}}\oplus V_{\psi_{1}+\psi_{2}}\oplus V_{2\omega_{1}-\psi_{1}+\psi_{2}}\oplus V_{2\omega_{2}} \oplus 2V_{2\omega_{1}}\oplus V_{2\omega_{1}+\psi_{1}-\psi_{2}}\oplus V_{\omega_{1}+\omega_{2}-\psi_{1}}\oplus V_{\omega_{1}+\omega_{2}-\psi_{2}} \oplus V_{-\psi_{1}+\psi_{2}}\oplus 2V_{0}\oplus V_{2\omega_{1}-2\psi_{1}}\oplus V_{\psi_{1}-\psi_{2}}\oplus V_{2\omega_{1}-\psi_{1}-\psi_{2}} \oplus V_{2\omega_{1}-2\psi_{2}}\oplus V_{-\psi_{1}-\psi_{2}}
Made total 1533158 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra 2A^{4}_1C^{1}_5
30 out of 119
Subalgebra type: \displaystyle 2A^{4}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{4}_1 .
Centralizer: \displaystyle A^{4}_1+A^{1}_1 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle 2A^{4}_1
Basis of Cartan of centralizer: 2 vectors: (1, 0, 1, 0, 0), (0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \displaystyle 2A^{4}_1+A^{1}_1 , \displaystyle 3A^{4}_1 , \displaystyle A^{5}_1+2A^{4}_1 , \displaystyle 3A^{4}_1+A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{4}_1: (2, 4, 6, 8, 4): 8, \displaystyle A^{4}_1: (2, 4, 2, 0, 0): 8
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-20}+g_{-21}, \displaystyle -g_{-6}+g_{-7}
Positive simple generators: \displaystyle g_{21}+g_{20}, \displaystyle g_{7}-g_{6}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/2 & 0\\ 0 & 1/2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}8 & 0\\ 0 & 8\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle 3V_{2\omega_{1}+2\omega_{2}}\oplus V_{2\omega_{2}}\oplus 4V_{\omega_{1}+\omega_{2}}\oplus V_{2\omega_{1}}\oplus 6V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{2\omega_{1}+2\omega_{2}+2\psi_{1}}\oplus V_{\omega_{1}+\omega_{2}+\psi_{1}+2\psi_{2}}\oplus V_{4\psi_{2}}\oplus V_{2\omega_{1}+2\omega_{2}} \oplus V_{\omega_{1}+\omega_{2}-\psi_{1}+2\psi_{2}}\oplus V_{2\psi_{1}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{2\omega_{1}+2\omega_{2}-2\psi_{1}} \oplus V_{\omega_{1}+\omega_{2}+\psi_{1}-2\psi_{2}}\oplus 2V_{0}\oplus V_{\omega_{1}+\omega_{2}-\psi_{1}-2\psi_{2}}\oplus V_{-2\psi_{1}} \oplus V_{-4\psi_{2}}
Made total 3764573 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{5}_1+A^{4}_1C^{1}_5
31 out of 119
Subalgebra type: \displaystyle A^{5}_1+A^{4}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{5}_1 .
Centralizer: \displaystyle A^{4}_1 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle 2A^{4}_1+A^{1}_1
Basis of Cartan of centralizer: 1 vectors: (1, 0, 0, 1, 0)
Contained up to conjugation as a direct summand of: \displaystyle A^{5}_1+2A^{4}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{5}_1: (2, 4, 6, 8, 5): 10, \displaystyle A^{4}_1: (2, 4, 4, 2, 0): 8
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-17}+g_{-18}+g_{-19}, \displaystyle -g_{-10}+g_{-11}
Positive simple generators: \displaystyle g_{19}+g_{18}+g_{17}, \displaystyle g_{11}-g_{10}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2/5 & 0\\ 0 & 1/2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}10 & 0\\ 0 & 8\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle 3V_{2\omega_{1}+2\omega_{2}}\oplus 2V_{2\omega_{1}+\omega_{2}}\oplus V_{2\omega_{2}}\oplus 2V_{2\omega_{1}}\oplus 2V_{\omega_{2}} \oplus 3V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{2\omega_{1}+2\omega_{2}+2\psi}\oplus V_{2\omega_{1}+\omega_{2}+\psi}\oplus V_{2\omega_{1}+2\omega_{2}}\oplus V_{2\psi}\oplus V_{\omega_{2}+\psi} \oplus V_{2\omega_{2}}\oplus 2V_{2\omega_{1}}\oplus V_{2\omega_{1}+\omega_{2}-\psi}\oplus V_{2\omega_{1}+2\omega_{2}-2\psi}\oplus V_{0}\oplus V_{\omega_{2}-\psi} \oplus V_{-2\psi}
Made total 5105422 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{8}_1+A^{1}_1C^{1}_5
32 out of 119
Subalgebra type: \displaystyle A^{8}_1+A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{8}_1 .
Centralizer: \displaystyle A^{3}_1+A^{1}_1 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle A^{8}_1+A^{1}_1
Basis of Cartan of centralizer: 2 vectors: (1, 0, 0, 1, 0), (2, 0, 0, 0, -1)
Contained up to conjugation as a direct summand of: \displaystyle A^{8}_1+2A^{1}_1 , \displaystyle A^{8}_1+A^{3}_1+A^{1}_1 , \displaystyle A^{8}_1+A^{4}_1+A^{1}_1 , \displaystyle A^{8}_1+A^{3}_1+2A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{8}_1: (4, 8, 8, 8, 4): 16, \displaystyle A^{1}_1: (0, 0, 2, 2, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-11}+g_{-17}, \displaystyle g_{-19}
Positive simple generators: \displaystyle 2g_{17}+2g_{11}, \displaystyle g_{19}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/4 & 0\\ 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}16 & 0\\ 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle 3V_{4\omega_{1}}\oplus 2V_{2\omega_{1}+\omega_{2}}\oplus V_{2\omega_{2}}\oplus 5V_{2\omega_{1}}\oplus 2V_{\omega_{2}}\oplus 6V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{4\omega_{1}+2\psi_{1}+4\psi_{2}}\oplus V_{2\psi_{1}+4\psi_{2}}\oplus V_{2\omega_{1}+2\psi_{1}+2\psi_{2}}\oplus V_{2\omega_{1}+\omega_{2}+\psi_{1}+2\psi_{2}} \oplus V_{2\omega_{1}+2\psi_{2}}\oplus V_{4\omega_{1}}\oplus V_{2\psi_{1}}\oplus V_{\omega_{2}+\psi_{1}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}} \oplus 2V_{0}\oplus V_{\omega_{2}-\psi_{1}}\oplus V_{2\omega_{1}-2\psi_{2}}\oplus V_{2\omega_{1}+\omega_{2}-\psi_{1}-2\psi_{2}}\oplus V_{-2\psi_{1}} \oplus V_{2\omega_{1}-2\psi_{1}-2\psi_{2}}\oplus V_{4\omega_{1}-2\psi_{1}-4\psi_{2}}\oplus V_{-2\psi_{1}-4\psi_{2}}
Made total 932 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{8}_1+A^{2}_1C^{1}_5
33 out of 119
Subalgebra type: \displaystyle A^{8}_1+A^{2}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{8}_1 .
Centralizer: \displaystyle A^{3}_1 + \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle B^{1}_2+A^{8}_1
Basis of Cartan of centralizer: 2 vectors: (0, 0, 1, 0, 0), (2, 0, 0, 0, -1)
Contained up to conjugation as a direct summand of: \displaystyle A^{8}_1+A^{3}_1+A^{2}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{8}_1: (4, 8, 8, 8, 4): 16, \displaystyle A^{2}_1: (0, 0, 2, 4, 2): 4
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-11}+g_{-17}, \displaystyle g_{-16}
Positive simple generators: \displaystyle 2g_{17}+2g_{11}, \displaystyle g_{16}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/4 & 0\\ 0 & 1\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}16 & 0\\ 0 & 4\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle 3V_{4\omega_{1}}\oplus 4V_{2\omega_{1}+\omega_{2}}\oplus 3V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus 4V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{4\omega_{1}+4\psi_{2}}\oplus V_{2\omega_{1}+\omega_{2}+\psi_{1}+2\psi_{2}}\oplus V_{4\psi_{2}}\oplus V_{2\omega_{1}+\omega_{2}-\psi_{1}+2\psi_{2}} \oplus V_{2\omega_{2}+2\psi_{1}}\oplus V_{4\omega_{1}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{2\omega_{1}+\omega_{2}+\psi_{1}-2\psi_{2}} \oplus 2V_{0}\oplus V_{2\omega_{2}-2\psi_{1}}\oplus V_{2\omega_{1}+\omega_{2}-\psi_{1}-2\psi_{2}}\oplus V_{4\omega_{1}-4\psi_{2}} \oplus V_{-4\psi_{2}}
Made total 7488844 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{8}_1+A^{3}_1C^{1}_5
34 out of 119
Subalgebra type: \displaystyle A^{8}_1+A^{3}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{8}_1 .
Centralizer: \displaystyle B^{1}_2 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_3
Basis of Cartan of centralizer: 2 vectors: (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \displaystyle A^{8}_1+A^{3}_1+A^{1}_1 , \displaystyle A^{8}_1+A^{3}_1+A^{2}_1 , \displaystyle A^{10}_1+A^{8}_1+A^{3}_1 , \displaystyle A^{8}_1+A^{3}_1+2A^{1}_1 , \displaystyle B^{1}_2+A^{8}_1+A^{3}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{8}_1: (4, 8, 8, 8, 4): 16, \displaystyle A^{3}_1: (2, 0, 2, 2, 1): 6
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-6}+g_{-21}, \displaystyle g_{-1}+g_{-19}
Positive simple generators: \displaystyle 2g_{21}+2g_{6}, \displaystyle g_{19}+g_{1}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/4 & 0\\ 0 & 2/3\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}16 & 0\\ 0 & 6\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{4\omega_{1}+2\omega_{2}}\oplus 4V_{2\omega_{1}+\omega_{2}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus 10V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{4\omega_{1}+2\omega_{2}}\oplus V_{2\omega_{1}+\omega_{2}-\psi_{1}+2\psi_{2}}\oplus V_{2\omega_{1}+\omega_{2}+\psi_{1}} \oplus V_{-2\psi_{1}+4\psi_{2}}\oplus V_{2\psi_{2}}\oplus V_{2\psi_{1}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{2\omega_{1}+\omega_{2}-\psi_{1}} \oplus V_{2\omega_{1}+\omega_{2}+\psi_{1}-2\psi_{2}}\oplus V_{-2\psi_{1}+2\psi_{2}}\oplus 2V_{0}\oplus V_{2\psi_{1}-2\psi_{2}}\oplus V_{-2\psi_{1}} \oplus V_{-2\psi_{2}}\oplus V_{2\psi_{1}-4\psi_{2}}
Made total 422471 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{8}_1+A^{4}_1C^{1}_5
35 out of 119
Subalgebra type: \displaystyle A^{8}_1+A^{4}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{8}_1 .
Centralizer: \displaystyle A^{1}_1 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_4
Basis of Cartan of centralizer: 1 vectors: (0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \displaystyle A^{8}_1+A^{4}_1+A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{8}_1: (4, 8, 8, 8, 4): 16, \displaystyle A^{4}_1: (2, 0, 2, 4, 2): 8
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-10}+g_{-18}, \displaystyle g_{-1}+g_{-13}+g_{-19}
Positive simple generators: \displaystyle 2g_{18}+2g_{10}, \displaystyle g_{19}+g_{13}+g_{1}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/4 & 0\\ 0 & 1/2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}16 & 0\\ 0 & 8\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{4\omega_{1}+2\omega_{2}}\oplus V_{2\omega_{1}+2\omega_{2}}\oplus 2V_{2\omega_{1}+\omega_{2}}\oplus 2V_{2\omega_{2}}\oplus 2V_{2\omega_{1}} \oplus 2V_{\omega_{2}}\oplus 3V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{4\omega_{1}+2\omega_{2}}\oplus V_{2\omega_{1}+\omega_{2}+2\psi}\oplus V_{4\psi}\oplus V_{2\omega_{1}+2\omega_{2}}\oplus V_{\omega_{2}+2\psi} \oplus 2V_{2\omega_{2}}\oplus 2V_{2\omega_{1}}\oplus V_{2\omega_{1}+\omega_{2}-2\psi}\oplus V_{0}\oplus V_{\omega_{2}-2\psi}\oplus V_{-4\psi}
Made total 4731438 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{8}_1+A^{5}_1C^{1}_5
36 out of 119
Subalgebra type: \displaystyle A^{8}_1+A^{5}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{8}_1 .
Centralizer: \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5
Basis of Cartan of centralizer: 1 vectors: (0, 0, 1, 0, 0)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{8}_1: (4, 8, 8, 8, 4): 16, \displaystyle A^{5}_1: (2, 0, 2, 4, 3): 10
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-14}+g_{-15}, \displaystyle g_{-1}+g_{-5}+g_{-16}
Positive simple generators: \displaystyle 2g_{15}+2g_{14}, \displaystyle g_{16}+g_{5}+g_{1}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/4 & 0\\ 0 & 2/5\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}16 & 0\\ 0 & 10\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{4\omega_{1}+2\omega_{2}}\oplus 2V_{2\omega_{1}+2\omega_{2}}\oplus 4V_{2\omega_{2}}\oplus 3V_{2\omega_{1}}\oplus V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{4\omega_{1}+2\omega_{2}}\oplus V_{2\omega_{1}+2\omega_{2}+\psi}\oplus V_{2\omega_{2}+2\psi}\oplus V_{2\omega_{1}+\psi}\oplus V_{2\omega_{1}+2\omega_{2}-\psi} \oplus 2V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{2\omega_{1}-\psi}\oplus V_{0}\oplus V_{2\omega_{2}-2\psi}
Made total 48944976 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{9}_1+A^{1}_1C^{1}_5
37 out of 119
Subalgebra type: \displaystyle A^{9}_1+A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{9}_1 .
Centralizer: \displaystyle A^{3}_1 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle B^{1}_2+A^{8}_1
Basis of Cartan of centralizer: 1 vectors: (2, 0, 0, 0, -1)
Contained up to conjugation as a direct summand of: \displaystyle A^{9}_1+A^{3}_1+A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{9}_1: (4, 8, 10, 10, 5): 18, \displaystyle A^{1}_1: (0, 0, 0, 2, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-11}+g_{-17}+g_{-19}, \displaystyle g_{-13}
Positive simple generators: \displaystyle g_{19}+2g_{17}+2g_{11}, \displaystyle g_{13}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2/9 & 0\\ 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}18 & 0\\ 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle 3V_{4\omega_{1}}\oplus 2V_{2\omega_{1}+\omega_{2}}\oplus 2V_{3\omega_{1}}\oplus V_{2\omega_{2}}\oplus V_{\omega_{1}+\omega_{2}}\oplus 2V_{2\omega_{1}} \oplus 2V_{\omega_{1}}\oplus 3V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{4\omega_{1}+4\psi}\oplus V_{2\omega_{1}+\omega_{2}+2\psi}\oplus V_{3\omega_{1}+2\psi}\oplus V_{4\psi}\oplus V_{4\omega_{1}}\oplus V_{\omega_{1}+2\psi} \oplus V_{2\omega_{2}}\oplus V_{\omega_{1}+\omega_{2}}\oplus 2V_{2\omega_{1}}\oplus V_{2\omega_{1}+\omega_{2}-2\psi}\oplus V_{3\omega_{1}-2\psi} \oplus V_{0}\oplus V_{4\omega_{1}-4\psi}\oplus V_{\omega_{1}-2\psi}\oplus V_{-4\psi}
Made total 709 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{9}_1+A^{3}_1C^{1}_5
38 out of 119
Subalgebra type: \displaystyle A^{9}_1+A^{3}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{9}_1 .
Centralizer: \displaystyle A^{1}_1 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_4
Basis of Cartan of centralizer: 1 vectors: (0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \displaystyle A^{9}_1+A^{3}_1+A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{9}_1: (4, 8, 10, 10, 5): 18, \displaystyle A^{3}_1: (2, 0, 0, 2, 1): 6
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-10}+g_{-18}+g_{-19}, \displaystyle g_{-1}+g_{-13}
Positive simple generators: \displaystyle g_{19}+2g_{18}+2g_{10}, \displaystyle g_{13}+g_{1}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2/9 & 0\\ 0 & 2/3\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}18 & 0\\ 0 & 6\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{4\omega_{1}+2\omega_{2}}\oplus V_{3\omega_{1}+\omega_{2}}\oplus 2V_{2\omega_{1}+\omega_{2}}\oplus V_{2\omega_{2}}\oplus V_{\omega_{1}+\omega_{2}} \oplus 2V_{2\omega_{1}}\oplus 2V_{\omega_{1}}\oplus 3V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{4\omega_{1}+2\omega_{2}}\oplus V_{2\omega_{1}+\omega_{2}+2\psi}\oplus V_{4\psi}\oplus V_{3\omega_{1}+\omega_{2}}\oplus V_{\omega_{1}+2\psi} \oplus V_{2\omega_{2}}\oplus V_{\omega_{1}+\omega_{2}}\oplus 2V_{2\omega_{1}}\oplus V_{2\omega_{1}+\omega_{2}-2\psi}\oplus V_{0}\oplus V_{\omega_{1}-2\psi} \oplus V_{-4\psi}
Made total 682383 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{9}_1+A^{4}_1C^{1}_5
39 out of 119
Subalgebra type: \displaystyle A^{9}_1+A^{4}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{9}_1 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{9}_1: (4, 8, 10, 10, 5): 18, \displaystyle A^{4}_1: (2, 0, 0, 2, 2): 8
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-14}+g_{-15}+g_{-19}, \displaystyle g_{-1}+g_{-5}+g_{-13}
Positive simple generators: \displaystyle g_{19}+2g_{15}+2g_{14}, \displaystyle g_{13}+g_{5}+g_{1}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2/9 & 0\\ 0 & 1/2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}18 & 0\\ 0 & 8\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{4\omega_{1}+2\omega_{2}}\oplus V_{2\omega_{1}+2\omega_{2}}\oplus V_{3\omega_{1}+\omega_{2}}\oplus 2V_{2\omega_{2}}\oplus 2V_{\omega_{1}+\omega_{2}} \oplus 3V_{2\omega_{1}}
Made total 6256102 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{10}_1+A^{1}_1C^{1}_5
40 out of 119
Subalgebra type: \displaystyle A^{10}_1+A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{10}_1 .
Centralizer: \displaystyle B^{1}_2 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_3
Basis of Cartan of centralizer: 2 vectors: (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \displaystyle A^{10}_1+2A^{1}_1 , \displaystyle A^{10}_1+A^{2}_1+A^{1}_1 , \displaystyle 2A^{10}_1+A^{1}_1 , \displaystyle A^{10}_1+3A^{1}_1 , \displaystyle B^{1}_2+A^{10}_1+A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{10}_1: (6, 8, 8, 8, 4): 20, \displaystyle A^{1}_1: (0, 0, 2, 2, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-1}+g_{-23}, \displaystyle g_{-19}
Positive simple generators: \displaystyle 4g_{23}+3g_{1}, \displaystyle g_{19}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/5 & 0\\ 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}20 & 0\\ 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{6\omega_{1}}\oplus V_{3\omega_{1}+\omega_{2}}\oplus 4V_{3\omega_{1}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus 4V_{\omega_{2}} \oplus 10V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{6\omega_{1}}\oplus V_{3\omega_{1}-\psi_{1}+2\psi_{2}}\oplus V_{3\omega_{1}+\psi_{1}}\oplus V_{3\omega_{1}+\omega_{2}}\oplus V_{-2\psi_{1}+4\psi_{2}} \oplus V_{2\psi_{2}}\oplus V_{\omega_{2}-\psi_{1}+2\psi_{2}}\oplus V_{2\psi_{1}}\oplus V_{\omega_{2}+\psi_{1}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}} \oplus V_{3\omega_{1}-\psi_{1}}\oplus V_{3\omega_{1}+\psi_{1}-2\psi_{2}}\oplus V_{-2\psi_{1}+2\psi_{2}}\oplus 2V_{0}\oplus V_{\omega_{2}-\psi_{1}} \oplus V_{2\psi_{1}-2\psi_{2}}\oplus V_{\omega_{2}+\psi_{1}-2\psi_{2}}\oplus V_{-2\psi_{1}}\oplus V_{-2\psi_{2}}\oplus V_{2\psi_{1}-4\psi_{2}}
Made total 458 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{10}_1+A^{2}_1C^{1}_5
41 out of 119
Subalgebra type: \displaystyle A^{10}_1+A^{2}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{10}_1 .
Centralizer: \displaystyle A^{1}_1 + \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_4
Basis of Cartan of centralizer: 2 vectors: (0, 0, 1, 0, 0), (0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \displaystyle A^{10}_1+A^{2}_1+A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{10}_1: (6, 8, 8, 8, 4): 20, \displaystyle A^{2}_1: (0, 0, 2, 4, 2): 4
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-1}+g_{-23}, \displaystyle g_{-16}
Positive simple generators: \displaystyle 4g_{23}+3g_{1}, \displaystyle g_{16}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/5 & 0\\ 0 & 1\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}20 & 0\\ 0 & 4\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{6\omega_{1}}\oplus 2V_{3\omega_{1}+\omega_{2}}\oplus 2V_{3\omega_{1}}\oplus 3V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus 4V_{\omega_{2}} \oplus 4V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{6\omega_{1}}\oplus V_{3\omega_{1}+2\psi_{2}}\oplus V_{3\omega_{1}+\omega_{2}+\psi_{1}}\oplus V_{4\psi_{2}}\oplus V_{\omega_{2}+\psi_{1}+2\psi_{2}} \oplus V_{2\omega_{2}+2\psi_{1}}\oplus V_{3\omega_{1}+\omega_{2}-\psi_{1}}\oplus V_{\omega_{2}-\psi_{1}+2\psi_{2}}\oplus V_{2\omega_{2}} \oplus V_{2\omega_{1}}\oplus V_{3\omega_{1}-2\psi_{2}}\oplus 2V_{0}\oplus V_{2\omega_{2}-2\psi_{1}}\oplus V_{\omega_{2}+\psi_{1}-2\psi_{2}} \oplus V_{\omega_{2}-\psi_{1}-2\psi_{2}}\oplus V_{-4\psi_{2}}
Made total 6291863 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{10}_1+A^{3}_1C^{1}_5
42 out of 119
Subalgebra type: \displaystyle A^{10}_1+A^{3}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{10}_1 .
Centralizer: \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5
Basis of Cartan of centralizer: 1 vectors: (0, 0, 1, 0, 0)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{10}_1: (4, 8, 10, 12, 6): 20, \displaystyle A^{3}_1: (2, 0, 0, 0, 1): 6
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-14}+g_{-15}+g_{-16}, \displaystyle g_{-1}+g_{-5}
Positive simple generators: \displaystyle g_{16}+2g_{15}+2g_{14}, \displaystyle g_{5}+g_{1}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/5 & 0\\ 0 & 2/3\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}20 & 0\\ 0 & 6\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{4\omega_{1}+2\omega_{2}}\oplus 2V_{3\omega_{1}+\omega_{2}}\oplus V_{2\omega_{2}}\oplus 2V_{\omega_{1}+\omega_{2}}\oplus 4V_{2\omega_{1}} \oplus V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{4\omega_{1}+2\omega_{2}}\oplus V_{3\omega_{1}+\omega_{2}+\psi}\oplus V_{2\omega_{1}+2\psi}\oplus V_{\omega_{1}+\omega_{2}+\psi} \oplus V_{3\omega_{1}+\omega_{2}-\psi}\oplus V_{2\omega_{2}}\oplus 2V_{2\omega_{1}}\oplus V_{\omega_{1}+\omega_{2}-\psi}\oplus V_{0}\oplus V_{2\omega_{1}-2\psi}
Made total 8196389 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{10}_1+A^{3}_1C^{1}_5
43 out of 119
Subalgebra type: \displaystyle A^{10}_1+A^{3}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{10}_1 .
Centralizer: \displaystyle A^{8}_1 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle B^{1}_2+A^{3}_1
Basis of Cartan of centralizer: 1 vectors: (0, 0, 0, 1, 0)
Contained up to conjugation as a direct summand of: \displaystyle A^{10}_1+A^{8}_1+A^{3}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{10}_1: (6, 8, 8, 8, 4): 20, \displaystyle A^{3}_1: (0, 0, 2, 4, 3): 6
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-1}+g_{-23}, \displaystyle g_{-9}+g_{-19}
Positive simple generators: \displaystyle 4g_{23}+3g_{1}, \displaystyle g_{19}+g_{9}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/5 & 0\\ 0 & 2/3\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}20 & 0\\ 0 & 6\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{6\omega_{1}}\oplus 3V_{3\omega_{1}+\omega_{2}}\oplus 6V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus 3V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{6\omega_{1}}\oplus V_{3\omega_{1}+\omega_{2}+\psi}\oplus V_{2\omega_{2}+2\psi}\oplus V_{3\omega_{1}+\omega_{2}}\oplus V_{2\omega_{2}+\psi} \oplus V_{3\omega_{1}+\omega_{2}-\psi}\oplus 2V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{\psi}\oplus V_{2\omega_{2}-\psi}\oplus V_{0}\oplus V_{2\omega_{2}-2\psi} \oplus V_{-\psi}
Made total 7172134 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{10}_1+A^{8}_1C^{1}_5
44 out of 119
Subalgebra type: \displaystyle A^{10}_1+A^{8}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{10}_1 .
Centralizer: \displaystyle A^{3}_1 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle B^{1}_2+A^{8}_1
Basis of Cartan of centralizer: 1 vectors: (0, 0, 2, 0, -1)
Contained up to conjugation as a direct summand of: \displaystyle A^{10}_1+A^{8}_1+A^{3}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{10}_1: (6, 8, 8, 8, 4): 20, \displaystyle A^{8}_1: (0, 0, 4, 8, 4): 16
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-1}+g_{-23}, \displaystyle g_{-4}+g_{-12}
Positive simple generators: \displaystyle 4g_{23}+3g_{1}, \displaystyle 2g_{12}+2g_{4}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/5 & 0\\ 0 & 1/4\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}20 & 0\\ 0 & 16\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{6\omega_{1}}\oplus 2V_{3\omega_{1}+2\omega_{2}}\oplus 3V_{4\omega_{2}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus 3V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{4\omega_{2}+4\psi}\oplus V_{3\omega_{1}+2\omega_{2}+2\psi}\oplus V_{6\omega_{1}}\oplus V_{4\psi}\oplus V_{4\omega_{2}}\oplus V_{3\omega_{1}+2\omega_{2}-2\psi} \oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{0}\oplus V_{4\omega_{2}-4\psi}\oplus V_{-4\psi}
Made total 206648 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra 2A^{10}_1C^{1}_5
45 out of 119
Subalgebra type: \displaystyle 2A^{10}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{10}_1 .
Centralizer: \displaystyle A^{1}_1 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_4
Basis of Cartan of centralizer: 1 vectors: (0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \displaystyle 2A^{10}_1+A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{10}_1: (6, 8, 8, 8, 4): 20, \displaystyle A^{10}_1: (0, 0, 6, 8, 4): 20
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-1}+g_{-23}, \displaystyle g_{-3}+g_{-13}
Positive simple generators: \displaystyle 4g_{23}+3g_{1}, \displaystyle 4g_{13}+3g_{3}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/5 & 0\\ 0 & 1/5\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}20 & 0\\ 0 & 20\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{6\omega_{2}}\oplus V_{3\omega_{1}+3\omega_{2}}\oplus V_{6\omega_{1}}\oplus 2V_{3\omega_{2}}\oplus 2V_{3\omega_{1}}\oplus V_{2\omega_{2}} \oplus V_{2\omega_{1}}\oplus 3V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{6\omega_{2}}\oplus V_{3\omega_{1}+3\omega_{2}}\oplus V_{6\omega_{1}}\oplus V_{3\omega_{2}+2\psi}\oplus V_{3\omega_{1}+2\psi}\oplus V_{4\psi} \oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{3\omega_{2}-2\psi}\oplus V_{3\omega_{1}-2\psi}\oplus V_{0}\oplus V_{-4\psi}
Made total 2816 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{11}_1+A^{1}_1C^{1}_5
46 out of 119
Subalgebra type: \displaystyle A^{11}_1+A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{11}_1 .
Centralizer: \displaystyle A^{1}_1 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_4
Basis of Cartan of centralizer: 1 vectors: (0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \displaystyle A^{11}_1+2A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{11}_1: (6, 8, 10, 10, 5): 22, \displaystyle A^{1}_1: (0, 0, 0, 2, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-1}+g_{-19}+g_{-23}, \displaystyle g_{-13}
Positive simple generators: \displaystyle 4g_{23}+g_{19}+3g_{1}, \displaystyle g_{13}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2/11 & 0\\ 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}22 & 0\\ 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{6\omega_{1}}\oplus V_{3\omega_{1}+\omega_{2}}\oplus V_{4\omega_{1}}\oplus 2V_{3\omega_{1}}\oplus V_{2\omega_{2}}\oplus V_{\omega_{1}+\omega_{2}} \oplus 3V_{2\omega_{1}}\oplus 2V_{\omega_{2}}\oplus 2V_{\omega_{1}}\oplus 3V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{6\omega_{1}}\oplus V_{3\omega_{1}+2\psi}\oplus V_{4\psi}\oplus V_{3\omega_{1}+\omega_{2}}\oplus V_{4\omega_{1}}\oplus V_{\omega_{2}+2\psi} \oplus V_{\omega_{1}+2\psi}\oplus V_{2\omega_{2}}\oplus V_{\omega_{1}+\omega_{2}}\oplus 3V_{2\omega_{1}}\oplus V_{3\omega_{1}-2\psi}\oplus V_{0} \oplus V_{\omega_{2}-2\psi}\oplus V_{\omega_{1}-2\psi}\oplus V_{-4\psi}
Made total 703 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{11}_1+A^{2}_1C^{1}_5
47 out of 119
Subalgebra type: \displaystyle A^{11}_1+A^{2}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{11}_1 .
Centralizer: \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5
Basis of Cartan of centralizer: 1 vectors: (0, 0, 0, 1, 0)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{11}_1: (6, 8, 10, 10, 5): 22, \displaystyle A^{2}_1: (0, 0, 0, 2, 2): 4
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-1}+g_{-19}+g_{-23}, \displaystyle g_{-9}
Positive simple generators: \displaystyle 4g_{23}+g_{19}+3g_{1}, \displaystyle g_{9}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2/11 & 0\\ 0 & 1\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}22 & 0\\ 0 & 4\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{6\omega_{1}}\oplus 2V_{3\omega_{1}+\omega_{2}}\oplus V_{4\omega_{1}}\oplus 3V_{2\omega_{2}}\oplus 2V_{\omega_{1}+\omega_{2}}\oplus 3V_{2\omega_{1}} \oplus V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{6\omega_{1}}\oplus V_{3\omega_{1}+\omega_{2}+\psi}\oplus V_{2\omega_{2}+2\psi}\oplus V_{4\omega_{1}}\oplus V_{\omega_{1}+\omega_{2}+\psi} \oplus V_{3\omega_{1}+\omega_{2}-\psi}\oplus V_{2\omega_{2}}\oplus 3V_{2\omega_{1}}\oplus V_{\omega_{1}+\omega_{2}-\psi}\oplus V_{0}\oplus V_{2\omega_{2}-2\psi}
Made total 1282769 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{11}_1+A^{10}_1C^{1}_5
48 out of 119
Subalgebra type: \displaystyle A^{11}_1+A^{10}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{11}_1 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{11}_1: (6, 8, 10, 10, 5): 22, \displaystyle A^{10}_1: (0, 0, 0, 6, 4): 20
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-1}+g_{-19}+g_{-23}, \displaystyle g_{-4}+g_{-5}
Positive simple generators: \displaystyle 4g_{23}+g_{19}+3g_{1}, \displaystyle 4g_{5}+3g_{4}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2/11 & 0\\ 0 & 1/5\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}22 & 0\\ 0 & 20\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{6\omega_{2}}\oplus V_{3\omega_{1}+3\omega_{2}}\oplus V_{6\omega_{1}}\oplus V_{\omega_{1}+3\omega_{2}}\oplus V_{4\omega_{1}}\oplus V_{2\omega_{2}} \oplus 3V_{2\omega_{1}}
Made total 4368 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{12}_1+A^{1}_1C^{1}_5
49 out of 119
Subalgebra type: \displaystyle A^{12}_1+A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{12}_1 .
Centralizer: \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5
Basis of Cartan of centralizer: 1 vectors: (0, 0, 1, 0, 0)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{12}_1: (6, 8, 10, 12, 6): 24, \displaystyle A^{1}_1: (0, 0, 0, 0, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-1}+g_{-16}+g_{-23}, \displaystyle g_{-5}
Positive simple generators: \displaystyle 4g_{23}+g_{16}+3g_{1}, \displaystyle g_{5}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/6 & 0\\ 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}24 & 0\\ 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{6\omega_{1}}\oplus V_{3\omega_{1}+\omega_{2}}\oplus 2V_{4\omega_{1}}\oplus V_{2\omega_{2}}\oplus 2V_{\omega_{1}+\omega_{2}}\oplus 6V_{2\omega_{1}} \oplus V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{6\omega_{1}}\oplus V_{4\omega_{1}+\psi}\oplus V_{2\omega_{1}+2\psi}\oplus V_{3\omega_{1}+\omega_{2}}\oplus V_{\omega_{1}+\omega_{2}+\psi} \oplus V_{2\omega_{1}+\psi}\oplus V_{4\omega_{1}-\psi}\oplus V_{2\omega_{2}}\oplus 2V_{2\omega_{1}}\oplus V_{\omega_{1}+\omega_{2}-\psi} \oplus V_{2\omega_{1}-\psi}\oplus V_{0}\oplus V_{2\omega_{1}-2\psi}
Made total 94415 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{13}_1+A^{8}_1C^{1}_5
50 out of 119
Subalgebra type: \displaystyle A^{13}_1+A^{8}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{13}_1 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{13}_1: (6, 8, 10, 12, 7): 26, \displaystyle A^{8}_1: (0, 4, 4, 4, 0): 16
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-6}+g_{-13}+g_{-15}+g_{-19}, \displaystyle -g_{-4}+g_{-7}
Positive simple generators: \displaystyle 4g_{19}+g_{15}+g_{13}+3g_{6}, \displaystyle 2g_{7}-2g_{4}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2/13 & 0\\ 0 & 1/4\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}26 & 0\\ 0 & 16\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{1}+4\omega_{2}}\oplus V_{4\omega_{1}+2\omega_{2}}\oplus V_{6\omega_{1}}\oplus V_{2\omega_{1}+2\omega_{2}}\oplus V_{2\omega_{2}} \oplus 2V_{2\omega_{1}}
Made total 7971893 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{18}_1+A^{3}_1C^{1}_5
51 out of 119
Subalgebra type: \displaystyle A^{18}_1+A^{3}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{18}_1 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{18}_1: (6, 10, 14, 16, 8): 36, \displaystyle A^{3}_1: (0, 2, 0, 0, 1): 6
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-10}+g_{-11}+g_{-12}+g_{-13}, \displaystyle g_{-2}+g_{-5}
Positive simple generators: \displaystyle 4g_{13}+2g_{12}+2g_{11}+3g_{10}, \displaystyle g_{5}+g_{2}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/9 & 0\\ 0 & 2/3\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}36 & 0\\ 0 & 6\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{4\omega_{1}+2\omega_{2}}\oplus V_{5\omega_{1}+\omega_{2}}\oplus V_{6\omega_{1}}\oplus V_{3\omega_{1}+\omega_{2}}\oplus V_{2\omega_{2}} \oplus V_{\omega_{1}+\omega_{2}}\oplus 2V_{2\omega_{1}}
Made total 1462843 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{20}_1+A^{1}_1C^{1}_5
52 out of 119
Subalgebra type: \displaystyle A^{20}_1+A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{20}_1 .
Centralizer: \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5
Basis of Cartan of centralizer: 1 vectors: (1, 0, -1, 0, 0)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{20}_1: (6, 12, 14, 16, 8): 40, \displaystyle A^{1}_1: (0, 0, 0, 0, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-2}+g_{-10}+g_{-16}, \displaystyle g_{-5}
Positive simple generators: \displaystyle 4g_{16}+3g_{10}+3g_{2}, \displaystyle g_{5}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/10 & 0\\ 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}40 & 0\\ 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle 3V_{6\omega_{1}}\oplus 2V_{3\omega_{1}+\omega_{2}}\oplus V_{4\omega_{1}}\oplus V_{2\omega_{2}}\oplus 3V_{2\omega_{1}}\oplus V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{6\omega_{1}+2\psi}\oplus V_{6\omega_{1}}\oplus V_{3\omega_{1}+\omega_{2}+\psi}\oplus V_{2\omega_{1}+2\psi}\oplus V_{4\omega_{1}} \oplus V_{6\omega_{1}-2\psi}\oplus V_{3\omega_{1}+\omega_{2}-\psi}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{0}\oplus V_{2\omega_{1}-2\psi}
Made total 95486 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{35}_1+A^{1}_1C^{1}_5
53 out of 119
Subalgebra type: \displaystyle A^{35}_1+A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{35}_1 .
Centralizer: \displaystyle A^{1}_1 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_4
Basis of Cartan of centralizer: 1 vectors: (0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \displaystyle A^{35}_1+2A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{35}_1: (10, 16, 18, 18, 9): 70, \displaystyle A^{1}_1: (0, 0, 0, 2, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-1}+g_{-2}+g_{-19}, \displaystyle g_{-13}
Positive simple generators: \displaystyle 9g_{19}+8g_{2}+5g_{1}, \displaystyle g_{13}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2/35 & 0\\ 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}70 & 0\\ 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{10\omega_{1}}\oplus V_{5\omega_{1}+\omega_{2}}\oplus V_{6\omega_{1}}\oplus 2V_{5\omega_{1}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}} \oplus 2V_{\omega_{2}}\oplus 3V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{10\omega_{1}}\oplus V_{5\omega_{1}+2\psi}\oplus V_{5\omega_{1}+\omega_{2}}\oplus V_{6\omega_{1}}\oplus V_{4\psi}\oplus V_{\omega_{2}+2\psi} \oplus V_{5\omega_{1}-2\psi}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{0}\oplus V_{\omega_{2}-2\psi}\oplus V_{-4\psi}
Made total 541 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{35}_1+A^{2}_1C^{1}_5
54 out of 119
Subalgebra type: \displaystyle A^{35}_1+A^{2}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{35}_1 .
Centralizer: \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5
Basis of Cartan of centralizer: 1 vectors: (0, 0, 0, 1, 0)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{35}_1: (10, 16, 18, 18, 9): 70, \displaystyle A^{2}_1: (0, 0, 0, 2, 2): 4
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-1}+g_{-2}+g_{-19}, \displaystyle g_{-9}
Positive simple generators: \displaystyle 9g_{19}+8g_{2}+5g_{1}, \displaystyle g_{9}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2/35 & 0\\ 0 & 1\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}70 & 0\\ 0 & 4\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{10\omega_{1}}\oplus 2V_{5\omega_{1}+\omega_{2}}\oplus V_{6\omega_{1}}\oplus 3V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{10\omega_{1}}\oplus V_{5\omega_{1}+\omega_{2}+\psi}\oplus V_{6\omega_{1}}\oplus V_{5\omega_{1}+\omega_{2}-\psi}\oplus V_{2\omega_{2}+2\psi} \oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{0}\oplus V_{2\omega_{2}-2\psi}
Made total 1051879 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{35}_1+A^{10}_1C^{1}_5
55 out of 119
Subalgebra type: \displaystyle A^{35}_1+A^{10}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{35}_1 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{35}_1: (10, 16, 18, 18, 9): 70, \displaystyle A^{10}_1: (0, 0, 0, 6, 4): 20
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-1}+g_{-2}+g_{-19}, \displaystyle g_{-4}+g_{-5}
Positive simple generators: \displaystyle 9g_{19}+8g_{2}+5g_{1}, \displaystyle 4g_{5}+3g_{4}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2/35 & 0\\ 0 & 1/5\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}70 & 0\\ 0 & 20\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{10\omega_{1}}\oplus V_{5\omega_{1}+3\omega_{2}}\oplus V_{6\omega_{2}}\oplus V_{6\omega_{1}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}
Made total 3340 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{36}_1+A^{1}_1C^{1}_5
56 out of 119
Subalgebra type: \displaystyle A^{36}_1+A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{36}_1 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{36}_1: (10, 16, 18, 20, 10): 72, \displaystyle A^{1}_1: (0, 0, 0, 0, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-1}+g_{-2}+g_{-13}+g_{-19}, \displaystyle g_{-5}
Positive simple generators: \displaystyle 9g_{19}+g_{13}+8g_{2}+5g_{1}, \displaystyle g_{5}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/18 & 0\\ 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}72 & 0\\ 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{10\omega_{1}}\oplus V_{5\omega_{1}+\omega_{2}}\oplus 2V_{6\omega_{1}}\oplus V_{4\omega_{1}}\oplus V_{2\omega_{2}}\oplus V_{\omega_{1}+\omega_{2}} \oplus 2V_{2\omega_{1}}
Made total 786 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{40}_1+A^{5}_1C^{1}_5
57 out of 119
Subalgebra type: \displaystyle A^{40}_1+A^{5}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{40}_1 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{40}_1: (8, 16, 20, 24, 12): 80, \displaystyle A^{5}_1: (2, 0, 2, 0, 1): 10
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-6}+g_{-7}+g_{-8}+g_{-9}, \displaystyle g_{-1}+g_{-3}+g_{-5}
Positive simple generators: \displaystyle 6g_{9}+6g_{8}+4g_{7}+4g_{6}, \displaystyle g_{5}+g_{3}+g_{1}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/20 & 0\\ 0 & 2/5\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}80 & 0\\ 0 & 10\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{8\omega_{1}+2\omega_{2}}\oplus V_{4\omega_{1}+2\omega_{2}}\oplus V_{6\omega_{1}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}
Made total 4996057 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{84}_1+A^{1}_1C^{1}_5
58 out of 119
Subalgebra type: \displaystyle A^{84}_1+A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{84}_1 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{84}_1: (14, 24, 30, 32, 16): 168, \displaystyle A^{1}_1: (0, 0, 0, 0, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: \displaystyle g_{-1}+g_{-2}+g_{-3}+g_{-13}, \displaystyle g_{-5}
Positive simple generators: \displaystyle 16g_{13}+15g_{3}+12g_{2}+7g_{1}, \displaystyle g_{5}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/42 & 0\\ 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}168 & 0\\ 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{14\omega_{1}}\oplus V_{10\omega_{1}}\oplus V_{7\omega_{1}+\omega_{2}}\oplus V_{6\omega_{1}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}
Made total 626 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra B^{1}_2C^{1}_5
59 out of 119
Subalgebra type: \displaystyle B^{1}_2 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle A^{1}_1 .
Centralizer: \displaystyle C^{1}_3 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle B^{1}_2
Basis of Cartan of centralizer: 3 vectors: (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \displaystyle B^{1}_2+A^{1}_1 , \displaystyle B^{1}_2+A^{2}_1 , \displaystyle B^{1}_2+A^{3}_1 , \displaystyle B^{1}_2+A^{8}_1 , \displaystyle B^{1}_2+A^{10}_1 , \displaystyle B^{1}_2+A^{11}_1 , \displaystyle B^{1}_2+A^{35}_1 , \displaystyle B^{1}_2+2A^{1}_1 , \displaystyle B^{1}_2+A^{2}_1+A^{1}_1 , \displaystyle B^{1}_2+A^{8}_1+A^{3}_1 , \displaystyle B^{1}_2+A^{10}_1+A^{1}_1 , \displaystyle 2B^{1}_2 , \displaystyle A^{2}_2+B^{1}_2 , \displaystyle B^{1}_2+3A^{1}_1 , \displaystyle 2B^{1}_2+A^{1}_1 , \displaystyle C^{1}_3+B^{1}_2 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle B^{1}_2: (2, 2, 2, 2, 1): 2, (-2, 0, 0, 0, 0): 4
Dimension of subalgebra generated by predefined or computed generators: 10.
Negative simple generators: \displaystyle g_{-25}, \displaystyle g_{1}
Positive simple generators: \displaystyle g_{25}, \displaystyle g_{-1}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & -1\\ -1 & 1\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & -2\\ -2 & 4\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{2}}\oplus 6V_{\omega_{2}}\oplus 21V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{-2\psi_{2}+4\psi_{3}}\oplus V_{\psi_{1}-\psi_{2}+2\psi_{3}}\oplus V_{\omega_{2}-\psi_{2}+2\psi_{3}}\oplus V_{2\psi_{1}} \oplus V_{\omega_{2}+\psi_{1}}\oplus V_{2\omega_{2}}\oplus V_{-\psi_{1}+2\psi_{3}}\oplus V_{\psi_{1}-2\psi_{2}+2\psi_{3}}\oplus V_{\psi_{2}} \oplus V_{\omega_{2}-\psi_{1}+\psi_{2}}\oplus V_{2\psi_{1}-\psi_{2}}\oplus V_{\omega_{2}+\psi_{1}-\psi_{2}}\oplus V_{-\psi_{1}-\psi_{2}+2\psi_{3}} \oplus V_{-2\psi_{1}+2\psi_{2}}\oplus 3V_{0}\oplus V_{\omega_{2}-\psi_{1}}\oplus V_{2\psi_{1}-2\psi_{2}}\oplus V_{\psi_{1}+\psi_{2}-2\psi_{3}} \oplus V_{\omega_{2}+\psi_{2}-2\psi_{3}}\oplus V_{-2\psi_{1}+\psi_{2}}\oplus V_{-\psi_{2}}\oplus V_{-\psi_{1}+2\psi_{2}-2\psi_{3}} \oplus V_{\psi_{1}-2\psi_{3}}\oplus V_{-2\psi_{1}}\oplus V_{-\psi_{1}+\psi_{2}-2\psi_{3}}\oplus V_{2\psi_{2}-4\psi_{3}}
Made total 363 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{2}_2C^{1}_5
60 out of 119
Subalgebra type: \displaystyle A^{2}_2 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle A^{2}_1 .
Centralizer: \displaystyle B^{1}_2 + \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_3
Basis of Cartan of centralizer: 3 vectors: (1, 0, -1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \displaystyle A^{2}_2+A^{1}_1 , \displaystyle A^{2}_2+A^{2}_1 , \displaystyle A^{2}_2+A^{10}_1 , \displaystyle A^{2}_2+2A^{1}_1 , \displaystyle A^{2}_2+B^{1}_2 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{2}_2: (2, 4, 4, 4, 2): 4, (0, -2, 0, 0, 0): 4
Dimension of subalgebra generated by predefined or computed generators: 8.
Negative simple generators: \displaystyle g_{-24}, \displaystyle g_{2}
Positive simple generators: \displaystyle g_{24}, \displaystyle g_{-2}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1 & -1/2\\ -1/2 & 1\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}4 & -2\\ -2 & 4\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{2}}\oplus V_{\omega_{1}+\omega_{2}}\oplus V_{2\omega_{1}}\oplus 4V_{\omega_{2}}\oplus 4V_{\omega_{1}}\oplus 11V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{2\psi_{1}+2\psi_{2}}\oplus V_{\omega_{1}+2\psi_{1}+\psi_{2}}\oplus V_{2\omega_{1}+2\psi_{1}}\oplus V_{\psi_{1}+2\psi_{3}} \oplus V_{\omega_{1}+\psi_{1}-\psi_{2}+2\psi_{3}}\oplus V_{-2\psi_{2}+4\psi_{3}}\oplus V_{\omega_{2}+\psi_{2}}\oplus V_{\omega_{1}+\omega_{2}} \oplus V_{\omega_{2}-\psi_{1}-\psi_{2}+2\psi_{3}}\oplus V_{\psi_{1}+2\psi_{2}-2\psi_{3}}\oplus V_{\omega_{1}+\psi_{1}+\psi_{2}-2\psi_{3}} \oplus 3V_{0}\oplus V_{2\omega_{2}-2\psi_{1}}\oplus V_{\omega_{1}-\psi_{2}}\oplus V_{-\psi_{1}-2\psi_{2}+2\psi_{3}}\oplus V_{\omega_{2}-\psi_{1}+\psi_{2}-2\psi_{3}} \oplus V_{\omega_{2}-2\psi_{1}-\psi_{2}}\oplus V_{2\psi_{2}-4\psi_{3}}\oplus V_{-\psi_{1}-2\psi_{3}}\oplus V_{-2\psi_{1}-2\psi_{2}}
Made total 2599 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra B^{2}_2C^{1}_5
61 out of 119
Subalgebra type: \displaystyle B^{2}_2 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{2}_1 .
Centralizer: \displaystyle A^{1}_1 + \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_4
Basis of Cartan of centralizer: 2 vectors: (1, 0, -1, 0, 0), (0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \displaystyle B^{2}_2+A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle B^{2}_2: (2, 4, 4, 4, 2): 4, (-2, -4, -2, 0, 0): 8
Dimension of subalgebra generated by predefined or computed generators: 10.
Negative simple generators: \displaystyle g_{-24}, \displaystyle g_{10}+g_{2}
Positive simple generators: \displaystyle g_{24}, \displaystyle g_{-2}+g_{-10}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1 & -1/2\\ -1/2 & 1/2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}4 & -4\\ -4 & 8\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle 3V_{2\omega_{2}}\oplus 4V_{\omega_{2}}\oplus V_{\omega_{1}}\oplus 4V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{4\psi_{2}}\oplus V_{\omega_{2}+\psi_{1}+2\psi_{2}}\oplus V_{2\omega_{2}+2\psi_{1}}\oplus V_{\omega_{2}-\psi_{1}+2\psi_{2}} \oplus V_{2\omega_{2}}\oplus V_{\omega_{1}}\oplus 2V_{0}\oplus V_{2\omega_{2}-2\psi_{1}}\oplus V_{\omega_{2}+\psi_{1}-2\psi_{2}}\oplus V_{\omega_{2}-\psi_{1}-2\psi_{2}} \oplus V_{-4\psi_{2}}
Made total 10926438 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra B^{4}_2C^{1}_5
62 out of 119
Subalgebra type: \displaystyle B^{4}_2 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{4}_1 .
Centralizer: \displaystyle A^{5}_1 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle B^{4}_2
Basis of Cartan of centralizer: 1 vectors: (2, 0, -2, 0, 1)
Contained up to conjugation as a direct summand of: \displaystyle B^{4}_2+A^{5}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle B^{4}_2: (2, 4, 6, 8, 4): 8, (0, 0, -4, -8, -4): 16
Dimension of subalgebra generated by predefined or computed generators: 10.
Negative simple generators: \displaystyle g_{-18}+g_{-22}, \displaystyle g_{12}+g_{4}
Positive simple generators: \displaystyle g_{22}+g_{18}, \displaystyle 2g_{-4}+2g_{-12}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/2 & -1/4\\ -1/4 & 1/4\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}8 & -8\\ -8 & 16\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{2}}\oplus 3V_{2\omega_{1}}\oplus 3V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{2\omega_{1}+4\psi}\oplus V_{4\psi}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{0}\oplus V_{2\omega_{1}-4\psi}\oplus V_{-4\psi}
Made total 6858036 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra 3A^{1}_1C^{1}_5
63 out of 119
Subalgebra type: \displaystyle 3A^{1}_1 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle 2A^{1}_1 .
Centralizer: \displaystyle B^{1}_2 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_3
Basis of Cartan of centralizer: 2 vectors: (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \displaystyle 4A^{1}_1 , \displaystyle A^{2}_1+3A^{1}_1 , \displaystyle A^{10}_1+3A^{1}_1 , \displaystyle 5A^{1}_1 , \displaystyle B^{1}_2+3A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{1}_1: (2, 2, 2, 2, 1): 2, \displaystyle A^{1}_1: (0, 2, 2, 2, 1): 2, \displaystyle A^{1}_1: (0, 0, 2, 2, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 9.
Negative simple generators: \displaystyle g_{-25}, \displaystyle g_{-23}, \displaystyle g_{-19}
Positive simple generators: \displaystyle g_{25}, \displaystyle g_{23}, \displaystyle g_{19}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{3}}\oplus V_{\omega_{2}+\omega_{3}}\oplus V_{\omega_{1}+\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{\omega_{1}+\omega_{2}} \oplus V_{2\omega_{1}}\oplus 4V_{\omega_{3}}\oplus 4V_{\omega_{2}}\oplus 4V_{\omega_{1}}\oplus 10V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{-2\psi_{1}+4\psi_{2}}\oplus V_{2\psi_{2}}\oplus V_{\omega_{3}-\psi_{1}+2\psi_{2}}\oplus V_{\omega_{2}-\psi_{1}+2\psi_{2}} \oplus V_{\omega_{1}-\psi_{1}+2\psi_{2}}\oplus V_{2\psi_{1}}\oplus V_{\omega_{3}+\psi_{1}}\oplus V_{\omega_{2}+\psi_{1}}\oplus V_{\omega_{1}+\psi_{1}} \oplus V_{2\omega_{3}}\oplus V_{\omega_{2}+\omega_{3}}\oplus V_{\omega_{1}+\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{\omega_{1}+\omega_{2}} \oplus V_{2\omega_{1}}\oplus V_{-2\psi_{1}+2\psi_{2}}\oplus 2V_{0}\oplus V_{\omega_{3}-\psi_{1}}\oplus V_{\omega_{2}-\psi_{1}}\oplus V_{\omega_{1}-\psi_{1}} \oplus V_{2\psi_{1}-2\psi_{2}}\oplus V_{\omega_{3}+\psi_{1}-2\psi_{2}}\oplus V_{\omega_{2}+\psi_{1}-2\psi_{2}}\oplus V_{\omega_{1}+\psi_{1}-2\psi_{2}} \oplus V_{-2\psi_{1}}\oplus V_{-2\psi_{2}}\oplus V_{2\psi_{1}-4\psi_{2}}
Made total 456 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{2}_1+2A^{1}_1C^{1}_5
64 out of 119
Subalgebra type: \displaystyle A^{2}_1+2A^{1}_1 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle A^{2}_1+A^{1}_1 .
Centralizer: \displaystyle A^{1}_1 + \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_4
Basis of Cartan of centralizer: 2 vectors: (1, 0, 0, 0, 0), (0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \displaystyle A^{2}_1+3A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{2}_1: (2, 4, 4, 4, 2): 4, \displaystyle A^{1}_1: (0, 0, 2, 2, 1): 2, \displaystyle A^{1}_1: (0, 0, 0, 2, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 9.
Negative simple generators: \displaystyle g_{-24}, \displaystyle g_{-19}, \displaystyle g_{-13}
Positive simple generators: \displaystyle g_{24}, \displaystyle g_{19}, \displaystyle g_{13}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}4 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{3}}\oplus V_{\omega_{2}+\omega_{3}}\oplus 2V_{\omega_{1}+\omega_{3}}\oplus V_{2\omega_{2}}\oplus 2V_{\omega_{1}+\omega_{2}} \oplus 3V_{2\omega_{1}}\oplus 2V_{\omega_{3}}\oplus 2V_{\omega_{2}}\oplus 4V_{\omega_{1}}\oplus 4V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{4\psi_{2}}\oplus V_{\omega_{1}+\psi_{1}+2\psi_{2}}\oplus V_{2\omega_{1}+2\psi_{1}}\oplus V_{\omega_{3}+2\psi_{2}}\oplus V_{\omega_{2}+2\psi_{2}} \oplus V_{\omega_{1}+\omega_{3}+\psi_{1}}\oplus V_{\omega_{1}+\omega_{2}+\psi_{1}}\oplus V_{\omega_{1}-\psi_{1}+2\psi_{2}} \oplus V_{2\omega_{3}}\oplus V_{\omega_{2}+\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{\omega_{1}+\omega_{3}-\psi_{1}} \oplus V_{\omega_{1}+\omega_{2}-\psi_{1}}\oplus 2V_{0}\oplus V_{2\omega_{1}-2\psi_{1}}\oplus V_{\omega_{1}+\psi_{1}-2\psi_{2}}\oplus V_{\omega_{3}-2\psi_{2}} \oplus V_{\omega_{2}-2\psi_{2}}\oplus V_{\omega_{1}-\psi_{1}-2\psi_{2}}\oplus V_{-4\psi_{2}}
Made total 1106823 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra 2A^{2}_1+A^{1}_1C^{1}_5
65 out of 119
Subalgebra type: \displaystyle 2A^{2}_1+A^{1}_1 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle 2A^{2}_1 .
Centralizer: \displaystyle T_{2} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5
Basis of Cartan of centralizer: 2 vectors: (1, 0, 0, 0, 0), (0, 0, 1, 0, 0)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{2}_1: (2, 4, 4, 4, 2): 4, \displaystyle A^{2}_1: (0, 0, 2, 4, 2): 4, \displaystyle A^{1}_1: (0, 0, 0, 0, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 9.
Negative simple generators: \displaystyle g_{-24}, \displaystyle g_{-16}, \displaystyle g_{-5}
Positive simple generators: \displaystyle g_{24}, \displaystyle g_{16}, \displaystyle g_{5}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}4 & 0 & 0\\ 0 & 4 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{3}}\oplus 2V_{\omega_{2}+\omega_{3}}\oplus 2V_{\omega_{1}+\omega_{3}}\oplus 3V_{2\omega_{2}}\oplus 4V_{\omega_{1}+\omega_{2}} \oplus 3V_{2\omega_{1}}\oplus 2V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{2\omega_{2}+2\psi_{2}}\oplus V_{\omega_{1}+\omega_{2}+\psi_{1}+\psi_{2}}\oplus V_{2\omega_{1}+2\psi_{1}}\oplus V_{\omega_{2}+\omega_{3}+\psi_{2}} \oplus V_{\omega_{1}+\omega_{3}+\psi_{1}}\oplus V_{\omega_{1}+\omega_{2}-\psi_{1}+\psi_{2}}\oplus V_{2\omega_{3}}\oplus V_{2\omega_{2}} \oplus V_{2\omega_{1}}\oplus V_{\omega_{1}+\omega_{2}+\psi_{1}-\psi_{2}}\oplus V_{\omega_{1}+\omega_{3}-\psi_{1}}\oplus V_{\omega_{2}+\omega_{3}-\psi_{2}} \oplus 2V_{0}\oplus V_{2\omega_{1}-2\psi_{1}}\oplus V_{\omega_{1}+\omega_{2}-\psi_{1}-\psi_{2}}\oplus V_{2\omega_{2}-2\psi_{2}}
Made total 1182105 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{3}_1+2A^{1}_1C^{1}_5
66 out of 119
Subalgebra type: \displaystyle A^{3}_1+2A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{3}_1+A^{1}_1 .
Centralizer: \displaystyle A^{8}_1 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle B^{1}_2+A^{3}_1
Basis of Cartan of centralizer: 1 vectors: (1, 0, 0, 0, 0)
Contained up to conjugation as a direct summand of: \displaystyle A^{8}_1+A^{3}_1+2A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{3}_1: (2, 4, 6, 6, 3): 6, \displaystyle A^{1}_1: (0, 0, 0, 2, 1): 2, \displaystyle A^{1}_1: (0, 0, 0, 0, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 9.
Negative simple generators: \displaystyle g_{-19}+g_{-24}, \displaystyle g_{-13}, \displaystyle g_{-5}
Positive simple generators: \displaystyle g_{24}+g_{19}, \displaystyle g_{13}, \displaystyle g_{5}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2/3 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}6 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{3}}\oplus V_{\omega_{2}+\omega_{3}}\oplus 3V_{\omega_{1}+\omega_{3}}\oplus V_{2\omega_{2}}\oplus 3V_{\omega_{1}+\omega_{2}} \oplus 6V_{2\omega_{1}}\oplus 3V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{2\omega_{1}+2\psi}\oplus V_{\omega_{1}+\omega_{3}+\psi}\oplus V_{\omega_{1}+\omega_{2}+\psi}\oplus V_{2\omega_{1}+\psi} \oplus V_{2\omega_{3}}\oplus V_{\omega_{2}+\omega_{3}}\oplus V_{\omega_{1}+\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{\omega_{1}+\omega_{2}} \oplus 2V_{2\omega_{1}}\oplus V_{\psi}\oplus V_{\omega_{1}+\omega_{3}-\psi}\oplus V_{\omega_{1}+\omega_{2}-\psi}\oplus V_{2\omega_{1}-\psi} \oplus V_{0}\oplus V_{2\omega_{1}-2\psi}\oplus V_{-\psi}
Made total 74480 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra 2A^{4}_1+A^{1}_1C^{1}_5
67 out of 119
Subalgebra type: \displaystyle 2A^{4}_1+A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle 2A^{4}_1 .
Centralizer: \displaystyle A^{4}_1 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle 2A^{4}_1+A^{1}_1
Basis of Cartan of centralizer: 1 vectors: (1, 0, 1, 0, 0)
Contained up to conjugation as a direct summand of: \displaystyle 3A^{4}_1+A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{4}_1: (2, 4, 6, 8, 4): 8, \displaystyle A^{4}_1: (2, 4, 2, 0, 0): 8, \displaystyle A^{1}_1: (0, 0, 0, 0, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 9.
Negative simple generators: \displaystyle g_{-20}+g_{-21}, \displaystyle -g_{-6}+g_{-7}, \displaystyle g_{-5}
Positive simple generators: \displaystyle g_{21}+g_{20}, \displaystyle g_{7}-g_{6}, \displaystyle g_{5}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/2 & 0 & 0\\ 0 & 1/2 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}8 & 0 & 0\\ 0 & 8 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle 3V_{2\omega_{1}+2\omega_{2}}\oplus 2V_{\omega_{1}+\omega_{2}+\omega_{3}}\oplus V_{2\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}} \oplus 3V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{2\omega_{1}+2\omega_{2}+2\psi}\oplus V_{\omega_{1}+\omega_{2}+\omega_{3}+\psi}\oplus V_{2\omega_{1}+2\omega_{2}} \oplus V_{2\psi}\oplus V_{2\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{\omega_{1}+\omega_{2}+\omega_{3}-\psi}\oplus V_{2\omega_{1}+2\omega_{2}-2\psi} \oplus V_{0}\oplus V_{-2\psi}
Made total 946 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra 3A^{4}_1C^{1}_5
68 out of 119
Subalgebra type: \displaystyle 3A^{4}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle 2A^{4}_1 .
Centralizer: \displaystyle A^{1}_1 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_4
Basis of Cartan of centralizer: 1 vectors: (0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \displaystyle 3A^{4}_1+A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{4}_1: (2, 4, 6, 8, 4): 8, \displaystyle A^{4}_1: (2, 4, 2, 0, 0): 8, \displaystyle A^{4}_1: (2, 0, 2, 0, 0): 8
Dimension of subalgebra generated by predefined or computed generators: 9.
Negative simple generators: \displaystyle g_{-20}+g_{-21}, \displaystyle -g_{-6}+g_{-7}, \displaystyle -g_{-1}+g_{-3}
Positive simple generators: \displaystyle g_{21}+g_{20}, \displaystyle g_{7}-g_{6}, \displaystyle g_{3}-g_{1}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/2 & 0 & 0\\ 0 & 1/2 & 0\\ 0 & 0 & 1/2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}8 & 0 & 0\\ 0 & 8 & 0\\ 0 & 0 & 8\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{1}+2\omega_{2}+2\omega_{3}}\oplus 2V_{\omega_{1}+\omega_{2}+\omega_{3}}\oplus V_{2\omega_{3}}\oplus V_{2\omega_{2}} \oplus V_{2\omega_{1}}\oplus 3V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{2\omega_{1}+2\omega_{2}+2\omega_{3}}\oplus V_{\omega_{1}+\omega_{2}+\omega_{3}+2\psi}\oplus V_{4\psi}\oplus V_{2\omega_{3}} \oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{\omega_{1}+\omega_{2}+\omega_{3}-2\psi}\oplus V_{0}\oplus V_{-4\psi}
Made total 8530 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{5}_1+2A^{4}_1C^{1}_5
69 out of 119
Subalgebra type: \displaystyle A^{5}_1+2A^{4}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{5}_1+A^{4}_1 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{5}_1: (2, 4, 6, 8, 5): 10, \displaystyle A^{4}_1: (2, 4, 4, 2, 0): 8, \displaystyle A^{4}_1: (2, 0, 0, 2, 0): 8
Dimension of subalgebra generated by predefined or computed generators: 9.
Negative simple generators: \displaystyle g_{-17}+g_{-18}+g_{-19}, \displaystyle -g_{-10}+g_{-11}, \displaystyle -g_{-1}+g_{-4}
Positive simple generators: \displaystyle g_{19}+g_{18}+g_{17}, \displaystyle g_{11}-g_{10}, \displaystyle g_{4}-g_{1}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2/5 & 0 & 0\\ 0 & 1/2 & 0\\ 0 & 0 & 1/2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}10 & 0 & 0\\ 0 & 8 & 0\\ 0 & 0 & 8\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{1}+2\omega_{2}+2\omega_{3}}\oplus V_{2\omega_{1}+\omega_{2}+\omega_{3}}\oplus V_{2\omega_{3}}\oplus V_{\omega_{2}+\omega_{3}} \oplus V_{2\omega_{2}}\oplus 2V_{2\omega_{1}}
Made total 9833 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{8}_1+2A^{1}_1C^{1}_5
70 out of 119
Subalgebra type: \displaystyle A^{8}_1+2A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{8}_1+A^{1}_1 .
Centralizer: \displaystyle A^{3}_1 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle B^{1}_2+A^{8}_1
Basis of Cartan of centralizer: 1 vectors: (2, 0, 0, 0, -1)
Contained up to conjugation as a direct summand of: \displaystyle A^{8}_1+A^{3}_1+2A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{8}_1: (4, 8, 8, 8, 4): 16, \displaystyle A^{1}_1: (0, 0, 2, 2, 1): 2, \displaystyle A^{1}_1: (0, 0, 0, 2, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 9.
Negative simple generators: \displaystyle g_{-11}+g_{-17}, \displaystyle g_{-19}, \displaystyle g_{-13}
Positive simple generators: \displaystyle 2g_{17}+2g_{11}, \displaystyle g_{19}, \displaystyle g_{13}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/4 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}16 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle 3V_{4\omega_{1}}\oplus 2V_{2\omega_{1}+\omega_{3}}\oplus 2V_{2\omega_{1}+\omega_{2}}\oplus V_{2\omega_{3}}\oplus V_{\omega_{2}+\omega_{3}} \oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus 3V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{4\omega_{1}+4\psi}\oplus V_{2\omega_{1}+\omega_{3}+2\psi}\oplus V_{2\omega_{1}+\omega_{2}+2\psi}\oplus V_{4\psi}\oplus V_{4\omega_{1}} \oplus V_{2\omega_{3}}\oplus V_{\omega_{2}+\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{2\omega_{1}+\omega_{3}-2\psi} \oplus V_{2\omega_{1}+\omega_{2}-2\psi}\oplus V_{0}\oplus V_{4\omega_{1}-4\psi}\oplus V_{-4\psi}
Made total 705 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{8}_1+A^{3}_1+A^{1}_1C^{1}_5
71 out of 119
Subalgebra type: \displaystyle A^{8}_1+A^{3}_1+A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{8}_1+A^{3}_1 .
Centralizer: \displaystyle A^{1}_1 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_4
Basis of Cartan of centralizer: 1 vectors: (0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \displaystyle A^{8}_1+A^{3}_1+2A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{8}_1: (4, 8, 8, 8, 4): 16, \displaystyle A^{3}_1: (2, 0, 2, 2, 1): 6, \displaystyle A^{1}_1: (0, 0, 0, 2, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 9.
Negative simple generators: \displaystyle g_{-6}+g_{-21}, \displaystyle g_{-1}+g_{-19}, \displaystyle g_{-13}
Positive simple generators: \displaystyle 2g_{21}+2g_{6}, \displaystyle g_{19}+g_{1}, \displaystyle g_{13}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/4 & 0 & 0\\ 0 & 2/3 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}16 & 0 & 0\\ 0 & 6 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{4\omega_{1}+2\omega_{2}}\oplus V_{2\omega_{1}+\omega_{2}+\omega_{3}}\oplus 2V_{2\omega_{1}+\omega_{2}}\oplus V_{2\omega_{3}} \oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus 2V_{\omega_{3}}\oplus 3V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{4\omega_{1}+2\omega_{2}}\oplus V_{2\omega_{1}+\omega_{2}+2\psi}\oplus V_{4\psi}\oplus V_{2\omega_{1}+\omega_{2}+\omega_{3}} \oplus V_{\omega_{3}+2\psi}\oplus V_{2\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{2\omega_{1}+\omega_{2}-2\psi}\oplus V_{0} \oplus V_{\omega_{3}-2\psi}\oplus V_{-4\psi}
Made total 640 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{8}_1+A^{3}_1+A^{2}_1C^{1}_5
72 out of 119
Subalgebra type: \displaystyle A^{8}_1+A^{3}_1+A^{2}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{8}_1+A^{3}_1 .
Centralizer: \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5
Basis of Cartan of centralizer: 1 vectors: (0, 0, 0, 1, 0)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{8}_1: (4, 8, 8, 8, 4): 16, \displaystyle A^{3}_1: (2, 0, 2, 2, 1): 6, \displaystyle A^{2}_1: (0, 0, 0, 2, 2): 4
Dimension of subalgebra generated by predefined or computed generators: 9.
Negative simple generators: \displaystyle g_{-6}+g_{-21}, \displaystyle g_{-1}+g_{-19}, \displaystyle g_{-9}
Positive simple generators: \displaystyle 2g_{21}+2g_{6}, \displaystyle g_{19}+g_{1}, \displaystyle g_{9}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/4 & 0 & 0\\ 0 & 2/3 & 0\\ 0 & 0 & 1\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}16 & 0 & 0\\ 0 & 6 & 0\\ 0 & 0 & 4\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{4\omega_{1}+2\omega_{2}}\oplus 2V_{2\omega_{1}+\omega_{2}+\omega_{3}}\oplus 3V_{2\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}} \oplus V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{4\omega_{1}+2\omega_{2}}\oplus V_{2\omega_{1}+\omega_{2}+\omega_{3}+\psi}\oplus V_{2\omega_{3}+2\psi}\oplus V_{2\omega_{1}+\omega_{2}+\omega_{3}-\psi} \oplus V_{2\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{0}\oplus V_{2\omega_{3}-2\psi}
Made total 1169233 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{8}_1+A^{4}_1+A^{1}_1C^{1}_5
73 out of 119
Subalgebra type: \displaystyle A^{8}_1+A^{4}_1+A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{8}_1+A^{4}_1 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{8}_1: (4, 8, 8, 8, 4): 16, \displaystyle A^{4}_1: (2, 0, 2, 4, 2): 8, \displaystyle A^{1}_1: (0, 0, 0, 0, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 9.
Negative simple generators: \displaystyle g_{-10}+g_{-18}, \displaystyle g_{-1}+g_{-13}+g_{-19}, \displaystyle g_{-5}
Positive simple generators: \displaystyle 2g_{18}+2g_{10}, \displaystyle g_{19}+g_{13}+g_{1}, \displaystyle g_{5}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/4 & 0 & 0\\ 0 & 1/2 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}16 & 0 & 0\\ 0 & 8 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{4\omega_{1}+2\omega_{2}}\oplus V_{2\omega_{1}+\omega_{2}+\omega_{3}}\oplus V_{2\omega_{1}+2\omega_{2}}\oplus V_{2\omega_{3}} \oplus V_{\omega_{2}+\omega_{3}}\oplus 2V_{2\omega_{2}}\oplus 2V_{2\omega_{1}}
Made total 963 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{9}_1+A^{3}_1+A^{1}_1C^{1}_5
74 out of 119
Subalgebra type: \displaystyle A^{9}_1+A^{3}_1+A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{9}_1+A^{3}_1 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{9}_1: (4, 8, 10, 10, 5): 18, \displaystyle A^{3}_1: (2, 0, 0, 2, 1): 6, \displaystyle A^{1}_1: (0, 0, 0, 0, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 9.
Negative simple generators: \displaystyle g_{-10}+g_{-18}+g_{-19}, \displaystyle g_{-1}+g_{-13}, \displaystyle g_{-5}
Positive simple generators: \displaystyle g_{19}+2g_{18}+2g_{10}, \displaystyle g_{13}+g_{1}, \displaystyle g_{5}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2/9 & 0 & 0\\ 0 & 2/3 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}18 & 0 & 0\\ 0 & 6 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{4\omega_{1}+2\omega_{2}}\oplus V_{2\omega_{1}+\omega_{2}+\omega_{3}}\oplus V_{3\omega_{1}+\omega_{2}}\oplus V_{2\omega_{3}} \oplus V_{\omega_{1}+\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{\omega_{1}+\omega_{2}}\oplus 2V_{2\omega_{1}}
Made total 729 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{10}_1+2A^{1}_1C^{1}_5
75 out of 119
Subalgebra type: \displaystyle A^{10}_1+2A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{10}_1+A^{1}_1 .
Centralizer: \displaystyle A^{1}_1 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_4
Basis of Cartan of centralizer: 1 vectors: (0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \displaystyle A^{10}_1+3A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{10}_1: (6, 8, 8, 8, 4): 20, \displaystyle A^{1}_1: (0, 0, 2, 2, 1): 2, \displaystyle A^{1}_1: (0, 0, 0, 2, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 9.
Negative simple generators: \displaystyle g_{-1}+g_{-23}, \displaystyle g_{-19}, \displaystyle g_{-13}
Positive simple generators: \displaystyle 4g_{23}+3g_{1}, \displaystyle g_{19}, \displaystyle g_{13}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/5 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}20 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{6\omega_{1}}\oplus V_{3\omega_{1}+\omega_{3}}\oplus V_{3\omega_{1}+\omega_{2}}\oplus 2V_{3\omega_{1}}\oplus V_{2\omega_{3}}\oplus V_{\omega_{2}+\omega_{3}} \oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus 2V_{\omega_{3}}\oplus 2V_{\omega_{2}}\oplus 3V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{6\omega_{1}}\oplus V_{3\omega_{1}+2\psi}\oplus V_{4\psi}\oplus V_{3\omega_{1}+\omega_{3}}\oplus V_{3\omega_{1}+\omega_{2}}\oplus V_{\omega_{3}+2\psi} \oplus V_{\omega_{2}+2\psi}\oplus V_{2\omega_{3}}\oplus V_{\omega_{2}+\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{3\omega_{1}-2\psi} \oplus V_{0}\oplus V_{\omega_{3}-2\psi}\oplus V_{\omega_{2}-2\psi}\oplus V_{-4\psi}
Made total 543 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{10}_1+A^{2}_1+A^{1}_1C^{1}_5
76 out of 119
Subalgebra type: \displaystyle A^{10}_1+A^{2}_1+A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{10}_1+A^{2}_1 .
Centralizer: \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5
Basis of Cartan of centralizer: 1 vectors: (0, 0, 1, 0, 0)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{10}_1: (6, 8, 8, 8, 4): 20, \displaystyle A^{2}_1: (0, 0, 2, 4, 2): 4, \displaystyle A^{1}_1: (0, 0, 0, 0, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 9.
Negative simple generators: \displaystyle g_{-1}+g_{-23}, \displaystyle g_{-16}, \displaystyle g_{-5}
Positive simple generators: \displaystyle 4g_{23}+3g_{1}, \displaystyle g_{16}, \displaystyle g_{5}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/5 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}20 & 0 & 0\\ 0 & 4 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{6\omega_{1}}\oplus V_{3\omega_{1}+\omega_{3}}\oplus 2V_{3\omega_{1}+\omega_{2}}\oplus V_{2\omega_{3}}\oplus 2V_{\omega_{2}+\omega_{3}} \oplus 3V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{6\omega_{1}}\oplus V_{3\omega_{1}+\omega_{2}+\psi}\oplus V_{2\omega_{2}+2\psi}\oplus V_{3\omega_{1}+\omega_{3}}\oplus V_{\omega_{2}+\omega_{3}+\psi} \oplus V_{3\omega_{1}+\omega_{2}-\psi}\oplus V_{2\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{\omega_{2}+\omega_{3}-\psi} \oplus V_{0}\oplus V_{2\omega_{2}-2\psi}
Made total 66639 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{10}_1+A^{8}_1+A^{3}_1C^{1}_5
77 out of 119
Subalgebra type: \displaystyle A^{10}_1+A^{8}_1+A^{3}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{10}_1+A^{8}_1 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{10}_1: (6, 8, 8, 8, 4): 20, \displaystyle A^{8}_1: (0, 0, 4, 8, 4): 16, \displaystyle A^{3}_1: (0, 0, 2, 0, 1): 6
Dimension of subalgebra generated by predefined or computed generators: 9.
Negative simple generators: \displaystyle g_{-1}+g_{-23}, \displaystyle g_{-8}+g_{-9}, \displaystyle g_{-3}+g_{-5}
Positive simple generators: \displaystyle 4g_{23}+3g_{1}, \displaystyle 2g_{9}+2g_{8}, \displaystyle g_{5}+g_{3}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/5 & 0 & 0\\ 0 & 1/4 & 0\\ 0 & 0 & 2/3\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}20 & 0 & 0\\ 0 & 16 & 0\\ 0 & 0 & 6\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{4\omega_{2}+2\omega_{3}}\oplus V_{3\omega_{1}+2\omega_{2}+\omega_{3}}\oplus V_{6\omega_{1}}\oplus V_{2\omega_{3}}\oplus V_{2\omega_{2}} \oplus V_{2\omega_{1}}
Made total 1467848 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra 2A^{10}_1+A^{1}_1C^{1}_5
78 out of 119
Subalgebra type: \displaystyle 2A^{10}_1+A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle 2A^{10}_1 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{10}_1: (6, 8, 8, 8, 4): 20, \displaystyle A^{10}_1: (0, 0, 6, 8, 4): 20, \displaystyle A^{1}_1: (0, 0, 0, 0, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 9.
Negative simple generators: \displaystyle g_{-1}+g_{-23}, \displaystyle g_{-3}+g_{-13}, \displaystyle g_{-5}
Positive simple generators: \displaystyle 4g_{23}+3g_{1}, \displaystyle 4g_{13}+3g_{3}, \displaystyle g_{5}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/5 & 0 & 0\\ 0 & 1/5 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}20 & 0 & 0\\ 0 & 20 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{6\omega_{2}}\oplus V_{3\omega_{1}+3\omega_{2}}\oplus V_{6\omega_{1}}\oplus V_{3\omega_{2}+\omega_{3}}\oplus V_{3\omega_{1}+\omega_{3}} \oplus V_{2\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}
Made total 624 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{11}_1+2A^{1}_1C^{1}_5
79 out of 119
Subalgebra type: \displaystyle A^{11}_1+2A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{11}_1+A^{1}_1 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{11}_1: (6, 8, 10, 10, 5): 22, \displaystyle A^{1}_1: (0, 0, 0, 2, 1): 2, \displaystyle A^{1}_1: (0, 0, 0, 0, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 9.
Negative simple generators: \displaystyle g_{-1}+g_{-19}+g_{-23}, \displaystyle g_{-13}, \displaystyle g_{-5}
Positive simple generators: \displaystyle 4g_{23}+g_{19}+3g_{1}, \displaystyle g_{13}, \displaystyle g_{5}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2/11 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}22 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{6\omega_{1}}\oplus V_{3\omega_{1}+\omega_{3}}\oplus V_{3\omega_{1}+\omega_{2}}\oplus V_{4\omega_{1}}\oplus V_{2\omega_{3}}\oplus V_{\omega_{2}+\omega_{3}} \oplus V_{\omega_{1}+\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{\omega_{1}+\omega_{2}}\oplus 3V_{2\omega_{1}}
Made total 786 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{35}_1+2A^{1}_1C^{1}_5
80 out of 119
Subalgebra type: \displaystyle A^{35}_1+2A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{35}_1+A^{1}_1 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{35}_1: (10, 16, 18, 18, 9): 70, \displaystyle A^{1}_1: (0, 0, 0, 2, 1): 2, \displaystyle A^{1}_1: (0, 0, 0, 0, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 9.
Negative simple generators: \displaystyle g_{-1}+g_{-2}+g_{-19}, \displaystyle g_{-13}, \displaystyle g_{-5}
Positive simple generators: \displaystyle 9g_{19}+8g_{2}+5g_{1}, \displaystyle g_{13}, \displaystyle g_{5}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2/35 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}70 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{10\omega_{1}}\oplus V_{5\omega_{1}+\omega_{3}}\oplus V_{5\omega_{1}+\omega_{2}}\oplus V_{6\omega_{1}}\oplus V_{2\omega_{3}}\oplus V_{\omega_{2}+\omega_{3}} \oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}
Made total 624 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra B^{1}_2+A^{1}_1C^{1}_5
81 out of 119
Subalgebra type: \displaystyle B^{1}_2+A^{1}_1 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle B^{1}_2 .
Centralizer: \displaystyle B^{1}_2 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_3
Basis of Cartan of centralizer: 2 vectors: (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \displaystyle B^{1}_2+2A^{1}_1 , \displaystyle B^{1}_2+A^{2}_1+A^{1}_1 , \displaystyle B^{1}_2+A^{10}_1+A^{1}_1 , \displaystyle B^{1}_2+3A^{1}_1 , \displaystyle 2B^{1}_2+A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle B^{1}_2: (2, 2, 2, 2, 1): 2, (-2, 0, 0, 0, 0): 4, \displaystyle A^{1}_1: (0, 0, 2, 2, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 13.
Negative simple generators: \displaystyle g_{-25}, \displaystyle g_{1}, \displaystyle g_{-19}
Positive simple generators: \displaystyle g_{25}, \displaystyle g_{-1}, \displaystyle g_{19}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & -1 & 0\\ -1 & 1 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & -2 & 0\\ -2 & 4 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{3}}\oplus V_{\omega_{2}+\omega_{3}}\oplus V_{2\omega_{2}}\oplus 4V_{\omega_{3}}\oplus 4V_{\omega_{2}}\oplus 10V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{-2\psi_{1}+4\psi_{2}}\oplus V_{2\psi_{2}}\oplus V_{\omega_{3}-\psi_{1}+2\psi_{2}}\oplus V_{\omega_{2}-\psi_{1}+2\psi_{2}} \oplus V_{2\psi_{1}}\oplus V_{\omega_{3}+\psi_{1}}\oplus V_{\omega_{2}+\psi_{1}}\oplus V_{2\omega_{3}}\oplus V_{\omega_{2}+\omega_{3}}\oplus V_{2\omega_{2}} \oplus V_{-2\psi_{1}+2\psi_{2}}\oplus 2V_{0}\oplus V_{\omega_{3}-\psi_{1}}\oplus V_{\omega_{2}-\psi_{1}}\oplus V_{2\psi_{1}-2\psi_{2}}\oplus V_{\omega_{3}+\psi_{1}-2\psi_{2}} \oplus V_{\omega_{2}+\psi_{1}-2\psi_{2}}\oplus V_{-2\psi_{1}}\oplus V_{-2\psi_{2}}\oplus V_{2\psi_{1}-4\psi_{2}}
Made total 450 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra B^{1}_2+A^{2}_1C^{1}_5
82 out of 119
Subalgebra type: \displaystyle B^{1}_2+A^{2}_1 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle B^{1}_2 .
Centralizer: \displaystyle A^{1}_1 + \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_4
Basis of Cartan of centralizer: 2 vectors: (0, 0, 1, 0, 0), (0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \displaystyle B^{1}_2+A^{2}_1+A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle B^{1}_2: (2, 2, 2, 2, 1): 2, (-2, 0, 0, 0, 0): 4, \displaystyle A^{2}_1: (0, 0, 2, 4, 2): 4
Dimension of subalgebra generated by predefined or computed generators: 13.
Negative simple generators: \displaystyle g_{-25}, \displaystyle g_{1}, \displaystyle g_{-16}
Positive simple generators: \displaystyle g_{25}, \displaystyle g_{-1}, \displaystyle g_{16}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & -1 & 0\\ -1 & 1 & 0\\ 0 & 0 & 1\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & -2 & 0\\ -2 & 4 & 0\\ 0 & 0 & 4\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle 3V_{2\omega_{3}}\oplus 2V_{\omega_{2}+\omega_{3}}\oplus V_{2\omega_{2}}\oplus 4V_{\omega_{3}}\oplus 2V_{\omega_{2}}\oplus 4V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{4\psi_{2}}\oplus V_{\omega_{3}+\psi_{1}+2\psi_{2}}\oplus V_{2\omega_{3}+2\psi_{1}}\oplus V_{\omega_{2}+2\psi_{2}}\oplus V_{\omega_{2}+\omega_{3}+\psi_{1}} \oplus V_{\omega_{3}-\psi_{1}+2\psi_{2}}\oplus V_{2\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{\omega_{2}+\omega_{3}-\psi_{1}}\oplus 2V_{0} \oplus V_{2\omega_{3}-2\psi_{1}}\oplus V_{\omega_{3}+\psi_{1}-2\psi_{2}}\oplus V_{\omega_{2}-2\psi_{2}}\oplus V_{\omega_{3}-\psi_{1}-2\psi_{2}} \oplus V_{-4\psi_{2}}
Made total 6168445 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra B^{1}_2+A^{3}_1C^{1}_5
83 out of 119
Subalgebra type: \displaystyle B^{1}_2+A^{3}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle B^{1}_2 .
Centralizer: \displaystyle A^{8}_1 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle B^{1}_2+A^{3}_1
Basis of Cartan of centralizer: 1 vectors: (0, 0, 0, 1, 0)
Contained up to conjugation as a direct summand of: \displaystyle B^{1}_2+A^{8}_1+A^{3}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle B^{1}_2: (2, 2, 2, 2, 1): 2, (-2, 0, 0, 0, 0): 4, \displaystyle A^{3}_1: (0, 0, 2, 4, 3): 6
Dimension of subalgebra generated by predefined or computed generators: 13.
Negative simple generators: \displaystyle g_{-25}, \displaystyle g_{1}, \displaystyle g_{-9}+g_{-19}
Positive simple generators: \displaystyle g_{25}, \displaystyle g_{-1}, \displaystyle g_{19}+g_{9}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & -1 & 0\\ -1 & 1 & 0\\ 0 & 0 & 2/3\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & -2 & 0\\ -2 & 4 & 0\\ 0 & 0 & 6\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle 6V_{2\omega_{3}}\oplus 3V_{\omega_{2}+\omega_{3}}\oplus V_{2\omega_{2}}\oplus 3V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{2\omega_{3}+2\psi}\oplus V_{2\omega_{3}+\psi}\oplus V_{\omega_{2}+\omega_{3}+\psi}\oplus 2V_{2\omega_{3}}\oplus V_{\omega_{2}+\omega_{3}} \oplus V_{2\omega_{2}}\oplus V_{\psi}\oplus V_{2\omega_{3}-\psi}\oplus V_{\omega_{2}+\omega_{3}-\psi}\oplus V_{0}\oplus V_{2\omega_{3}-2\psi}\oplus V_{-\psi}
Made total 7138069 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra B^{1}_2+A^{8}_1C^{1}_5
84 out of 119
Subalgebra type: \displaystyle B^{1}_2+A^{8}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle B^{1}_2 .
Centralizer: \displaystyle A^{3}_1 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle B^{1}_2+A^{8}_1
Basis of Cartan of centralizer: 1 vectors: (0, 0, 2, 0, -1)
Contained up to conjugation as a direct summand of: \displaystyle B^{1}_2+A^{8}_1+A^{3}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle B^{1}_2: (2, 2, 2, 2, 1): 2, (-2, 0, 0, 0, 0): 4, \displaystyle A^{8}_1: (0, 0, 4, 8, 4): 16
Dimension of subalgebra generated by predefined or computed generators: 13.
Negative simple generators: \displaystyle g_{-25}, \displaystyle g_{1}, \displaystyle g_{-4}+g_{-12}
Positive simple generators: \displaystyle g_{25}, \displaystyle g_{-1}, \displaystyle 2g_{12}+2g_{4}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & -1 & 0\\ -1 & 1 & 0\\ 0 & 0 & 1/4\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & -2 & 0\\ -2 & 4 & 0\\ 0 & 0 & 16\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle 3V_{4\omega_{3}}\oplus 2V_{\omega_{2}+2\omega_{3}}\oplus V_{2\omega_{3}}\oplus V_{2\omega_{2}}\oplus 3V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{4\omega_{3}+4\psi}\oplus V_{\omega_{2}+2\omega_{3}+2\psi}\oplus V_{4\psi}\oplus V_{4\omega_{3}}\oplus V_{2\omega_{3}}\oplus V_{2\omega_{2}} \oplus V_{\omega_{2}+2\omega_{3}-2\psi}\oplus V_{0}\oplus V_{4\omega_{3}-4\psi}\oplus V_{-4\psi}
Made total 206640 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra B^{1}_2+A^{10}_1C^{1}_5
85 out of 119
Subalgebra type: \displaystyle B^{1}_2+A^{10}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle B^{1}_2 .
Centralizer: \displaystyle A^{1}_1 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_4
Basis of Cartan of centralizer: 1 vectors: (0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \displaystyle B^{1}_2+A^{10}_1+A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle B^{1}_2: (2, 2, 2, 2, 1): 2, (-2, 0, 0, 0, 0): 4, \displaystyle A^{10}_1: (0, 0, 6, 8, 4): 20
Dimension of subalgebra generated by predefined or computed generators: 13.
Negative simple generators: \displaystyle g_{-25}, \displaystyle g_{1}, \displaystyle g_{-3}+g_{-13}
Positive simple generators: \displaystyle g_{25}, \displaystyle g_{-1}, \displaystyle 4g_{13}+3g_{3}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & -1 & 0\\ -1 & 1 & 0\\ 0 & 0 & 1/5\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & -2 & 0\\ -2 & 4 & 0\\ 0 & 0 & 20\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{6\omega_{3}}\oplus V_{\omega_{2}+3\omega_{3}}\oplus 2V_{3\omega_{3}}\oplus V_{2\omega_{3}}\oplus V_{2\omega_{2}}\oplus 2V_{\omega_{2}} \oplus 3V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{6\omega_{3}}\oplus V_{3\omega_{3}+2\psi}\oplus V_{4\psi}\oplus V_{\omega_{2}+3\omega_{3}}\oplus V_{\omega_{2}+2\psi}\oplus V_{2\omega_{3}} \oplus V_{2\omega_{2}}\oplus V_{3\omega_{3}-2\psi}\oplus V_{0}\oplus V_{\omega_{2}-2\psi}\oplus V_{-4\psi}
Made total 2816 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra B^{1}_2+A^{11}_1C^{1}_5
86 out of 119
Subalgebra type: \displaystyle B^{1}_2+A^{11}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle B^{1}_2 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5

Elements Cartan subalgebra scaled to act by two by components: \displaystyle B^{1}_2: (2, 2, 2, 2, 1): 2, (-2, 0, 0, 0, 0): 4, \displaystyle A^{11}_1: (0, 0, 6, 8, 5): 22
Dimension of subalgebra generated by predefined or computed generators: 13.
Negative simple generators: \displaystyle g_{-25}, \displaystyle g_{1}, \displaystyle g_{-3}+g_{-5}+g_{-13}
Positive simple generators: \displaystyle g_{25}, \displaystyle g_{-1}, \displaystyle 4g_{13}+g_{5}+3g_{3}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & -1 & 0\\ -1 & 1 & 0\\ 0 & 0 & 2/11\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & -2 & 0\\ -2 & 4 & 0\\ 0 & 0 & 22\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{6\omega_{3}}\oplus V_{4\omega_{3}}\oplus V_{\omega_{2}+3\omega_{3}}\oplus 3V_{2\omega_{3}}\oplus V_{\omega_{2}+\omega_{3}}\oplus V_{2\omega_{2}}
Made total 1149555 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra B^{1}_2+A^{35}_1C^{1}_5
87 out of 119
Subalgebra type: \displaystyle B^{1}_2+A^{35}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle B^{1}_2 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5

Elements Cartan subalgebra scaled to act by two by components: \displaystyle B^{1}_2: (2, 2, 2, 2, 1): 2, (-2, 0, 0, 0, 0): 4, \displaystyle A^{35}_1: (0, 0, 10, 16, 9): 70
Dimension of subalgebra generated by predefined or computed generators: 13.
Negative simple generators: \displaystyle g_{-25}, \displaystyle g_{1}, \displaystyle g_{-3}+g_{-4}+g_{-5}
Positive simple generators: \displaystyle g_{25}, \displaystyle g_{-1}, \displaystyle 9g_{5}+8g_{4}+5g_{3}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & -1 & 0\\ -1 & 1 & 0\\ 0 & 0 & 2/35\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & -2 & 0\\ -2 & 4 & 0\\ 0 & 0 & 70\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{10\omega_{3}}\oplus V_{6\omega_{3}}\oplus V_{\omega_{2}+5\omega_{3}}\oplus V_{2\omega_{3}}\oplus V_{2\omega_{2}}
Made total 10737 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{2}_2+A^{1}_1C^{1}_5
88 out of 119
Subalgebra type: \displaystyle A^{2}_2+A^{1}_1 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle A^{2}_2 .
Centralizer: \displaystyle A^{1}_1 + \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_4
Basis of Cartan of centralizer: 2 vectors: (1, 0, -1, -1, 0), (0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \displaystyle A^{2}_2+2A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{2}_2: (2, 4, 4, 4, 2): 4, (0, -2, 0, 0, 0): 4, \displaystyle A^{1}_1: (0, 0, 0, 2, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 11.
Negative simple generators: \displaystyle g_{-24}, \displaystyle g_{2}, \displaystyle g_{-13}
Positive simple generators: \displaystyle g_{24}, \displaystyle g_{-2}, \displaystyle g_{13}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1 & -1/2 & 0\\ -1/2 & 1 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}4 & -2 & 0\\ -2 & 4 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{3}}\oplus V_{\omega_{2}+\omega_{3}}\oplus V_{\omega_{1}+\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{\omega_{1}+\omega_{2}} \oplus V_{2\omega_{1}}\oplus 2V_{\omega_{3}}\oplus 2V_{\omega_{2}}\oplus 2V_{\omega_{1}}\oplus 4V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{2\psi_{1}+4\psi_{2}}\oplus V_{\omega_{1}+2\psi_{1}+2\psi_{2}}\oplus V_{\omega_{3}+\psi_{1}+2\psi_{2}}\oplus V_{2\omega_{1}+2\psi_{1}} \oplus V_{\omega_{2}+2\psi_{2}}\oplus V_{\omega_{1}+\omega_{3}+\psi_{1}}\oplus V_{2\omega_{3}}\oplus V_{\omega_{1}+\omega_{2}}\oplus V_{\omega_{2}+\omega_{3}-\psi_{1}} \oplus 2V_{0}\oplus V_{2\omega_{2}-2\psi_{1}}\oplus V_{\omega_{1}-2\psi_{2}}\oplus V_{\omega_{3}-\psi_{1}-2\psi_{2}}\oplus V_{\omega_{2}-2\psi_{1}-2\psi_{2}} \oplus V_{-2\psi_{1}-4\psi_{2}}
Made total 448 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{2}_2+A^{2}_1C^{1}_5
89 out of 119
Subalgebra type: \displaystyle A^{2}_2+A^{2}_1 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle A^{2}_2 .
Centralizer: \displaystyle T_{2} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5
Basis of Cartan of centralizer: 2 vectors: (0, 0, 0, 1, 0), (2, 0, -2, 0, -1)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{2}_2: (2, 4, 4, 4, 2): 4, (0, -2, 0, 0, 0): 4, \displaystyle A^{2}_1: (0, 0, 0, 2, 2): 4
Dimension of subalgebra generated by predefined or computed generators: 11.
Negative simple generators: \displaystyle g_{-24}, \displaystyle g_{2}, \displaystyle g_{-9}
Positive simple generators: \displaystyle g_{24}, \displaystyle g_{-2}, \displaystyle g_{9}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1 & -1/2 & 0\\ -1/2 & 1 & 0\\ 0 & 0 & 1\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}4 & -2 & 0\\ -2 & 4 & 0\\ 0 & 0 & 4\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle 3V_{2\omega_{3}}\oplus 2V_{\omega_{2}+\omega_{3}}\oplus 2V_{\omega_{1}+\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{\omega_{1}+\omega_{2}} \oplus V_{2\omega_{1}}\oplus 2V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{2\omega_{3}+2\psi_{1}+4\psi_{2}}\oplus V_{\omega_{1}+\omega_{3}+\psi_{1}+4\psi_{2}}\oplus V_{2\omega_{1}+4\psi_{2}} \oplus V_{\omega_{2}+\omega_{3}+\psi_{1}}\oplus V_{2\omega_{3}}\oplus V_{\omega_{1}+\omega_{2}}\oplus V_{\omega_{1}+\omega_{3}-\psi_{1}} \oplus 2V_{0}\oplus V_{2\omega_{2}-4\psi_{2}}\oplus V_{\omega_{2}+\omega_{3}-\psi_{1}-4\psi_{2}}\oplus V_{2\omega_{3}-2\psi_{1}-4\psi_{2}}
Made total 13856855 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{2}_2+A^{10}_1C^{1}_5
90 out of 119
Subalgebra type: \displaystyle A^{2}_2+A^{10}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{2}_2 .
Centralizer: \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5
Basis of Cartan of centralizer: 1 vectors: (2, 0, -2, -2, -1)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{2}_2: (2, 4, 4, 4, 2): 4, (0, -2, 0, 0, 0): 4, \displaystyle A^{10}_1: (0, 0, 0, 6, 4): 20
Dimension of subalgebra generated by predefined or computed generators: 11.
Negative simple generators: \displaystyle g_{-24}, \displaystyle g_{2}, \displaystyle g_{-4}+g_{-5}
Positive simple generators: \displaystyle g_{24}, \displaystyle g_{-2}, \displaystyle 4g_{5}+3g_{4}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1 & -1/2 & 0\\ -1/2 & 1 & 0\\ 0 & 0 & 1/5\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}4 & -2 & 0\\ -2 & 4 & 0\\ 0 & 0 & 20\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{6\omega_{3}}\oplus V_{\omega_{2}+3\omega_{3}}\oplus V_{\omega_{1}+3\omega_{3}}\oplus V_{2\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{\omega_{1}+\omega_{2}} \oplus V_{2\omega_{1}}\oplus V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{2\omega_{1}+4\psi}\oplus V_{\omega_{1}+3\omega_{3}+2\psi}\oplus V_{6\omega_{3}}\oplus V_{2\omega_{3}}\oplus V_{\omega_{1}+\omega_{2}} \oplus V_{\omega_{2}+3\omega_{3}-2\psi}\oplus V_{0}\oplus V_{2\omega_{2}-4\psi}
Made total 2814 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra B^{2}_2+A^{1}_1C^{1}_5
91 out of 119
Subalgebra type: \displaystyle B^{2}_2+A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle B^{2}_2 .
Centralizer: \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5
Basis of Cartan of centralizer: 1 vectors: (1, 0, -1, 0, 0)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle B^{2}_2: (2, 4, 4, 4, 2): 4, (-2, -4, -2, 0, 0): 8, \displaystyle A^{1}_1: (0, 0, 0, 0, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 13.
Negative simple generators: \displaystyle g_{-24}, \displaystyle g_{10}+g_{2}, \displaystyle g_{-5}
Positive simple generators: \displaystyle g_{24}, \displaystyle g_{-2}+g_{-10}, \displaystyle g_{5}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1 & -1/2 & 0\\ -1/2 & 1/2 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}4 & -4 & 0\\ -4 & 8 & 0\\ 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{3}}\oplus 2V_{\omega_{2}+\omega_{3}}\oplus 3V_{2\omega_{2}}\oplus V_{\omega_{1}}\oplus V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{2\omega_{2}+2\psi}\oplus V_{\omega_{2}+\omega_{3}+\psi}\oplus V_{2\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{\omega_{1}}\oplus V_{\omega_{2}+\omega_{3}-\psi} \oplus V_{0}\oplus V_{2\omega_{2}-2\psi}
Made total 93254 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra B^{4}_2+A^{5}_1C^{1}_5
92 out of 119
Subalgebra type: \displaystyle B^{4}_2+A^{5}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle B^{4}_2 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5

Elements Cartan subalgebra scaled to act by two by components: \displaystyle B^{4}_2: (2, 4, 6, 8, 4): 8, (0, 0, -4, -8, -4): 16, \displaystyle A^{5}_1: (2, 0, 2, 0, 1): 10
Dimension of subalgebra generated by predefined or computed generators: 13.
Negative simple generators: \displaystyle g_{-20}+g_{-21}, \displaystyle g_{9}+g_{8}, \displaystyle g_{-1}-g_{-3}-g_{-5}
Positive simple generators: \displaystyle g_{21}+g_{20}, \displaystyle 2g_{-8}+2g_{-9}, \displaystyle -g_{5}-g_{3}+g_{1}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/2 & -1/4 & 0\\ -1/4 & 1/4 & 0\\ 0 & 0 & 2/5\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}8 & -8 & 0\\ -8 & 16 & 0\\ 0 & 0 & 10\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{1}+2\omega_{3}}\oplus V_{2\omega_{3}}\oplus V_{2\omega_{2}}
Made total 5126406 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra C^{1}_3C^{1}_5
93 out of 119
Subalgebra type: \displaystyle C^{1}_3 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle A^{2}_2 .
Centralizer: \displaystyle B^{1}_2 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_3
Basis of Cartan of centralizer: 2 vectors: (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \displaystyle C^{1}_3+A^{1}_1 , \displaystyle C^{1}_3+A^{2}_1 , \displaystyle C^{1}_3+A^{10}_1 , \displaystyle C^{1}_3+2A^{1}_1 , \displaystyle C^{1}_3+B^{1}_2 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle C^{1}_3: (2, 4, 4, 4, 2): 4, (0, -2, 0, 0, 0): 4, (0, 0, -2, -2, -1): 2
Dimension of subalgebra generated by predefined or computed generators: 21.
Negative simple generators: \displaystyle g_{-24}, \displaystyle g_{2}, \displaystyle g_{19}
Positive simple generators: \displaystyle g_{24}, \displaystyle g_{-2}, \displaystyle g_{-19}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1 & -1/2 & 0\\ -1/2 & 1 & -1\\ 0 & -1 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}4 & -2 & 0\\ -2 & 4 & -2\\ 0 & -2 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{1}}\oplus 4V_{\omega_{1}}\oplus 10V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{-2\psi_{1}+4\psi_{2}}\oplus V_{2\psi_{2}}\oplus V_{\omega_{1}-\psi_{1}+2\psi_{2}}\oplus V_{2\psi_{1}}\oplus V_{\omega_{1}+\psi_{1}} \oplus V_{2\omega_{1}}\oplus V_{-2\psi_{1}+2\psi_{2}}\oplus 2V_{0}\oplus V_{\omega_{1}-\psi_{1}}\oplus V_{2\psi_{1}-2\psi_{2}}\oplus V_{\omega_{1}+\psi_{1}-2\psi_{2}} \oplus V_{-2\psi_{1}}\oplus V_{-2\psi_{2}}\oplus V_{2\psi_{1}-4\psi_{2}}
Made total 450 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{2}_3C^{1}_5
94 out of 119
Subalgebra type: \displaystyle A^{2}_3 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle A^{2}_2 .
Centralizer: \displaystyle A^{1}_1 + \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_4
Basis of Cartan of centralizer: 2 vectors: (1, 0, -1, -2, 0), (0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \displaystyle A^{2}_3+A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{2}_3: (2, 4, 4, 4, 2): 4, (0, -2, 0, 0, 0): 4, (0, 0, -2, 0, 0): 4
Dimension of subalgebra generated by predefined or computed generators: 15.
Negative simple generators: \displaystyle g_{-24}, \displaystyle g_{2}, \displaystyle g_{3}
Positive simple generators: \displaystyle g_{24}, \displaystyle g_{-2}, \displaystyle g_{-3}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1 & -1/2 & 0\\ -1/2 & 1 & -1/2\\ 0 & -1/2 & 1\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}4 & -2 & 0\\ -2 & 4 & -2\\ 0 & -2 & 4\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{3}}\oplus V_{\omega_{1}+\omega_{3}}\oplus V_{2\omega_{1}}\oplus 2V_{\omega_{3}}\oplus 2V_{\omega_{1}}\oplus 4V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{4\psi_{1}+4\psi_{2}}\oplus V_{\omega_{1}+3\psi_{1}+2\psi_{2}}\oplus V_{\omega_{3}+\psi_{1}+2\psi_{2}}\oplus V_{2\omega_{1}+2\psi_{1}} \oplus V_{\omega_{1}+\omega_{3}}\oplus 2V_{0}\oplus V_{2\omega_{3}-2\psi_{1}}\oplus V_{\omega_{1}-\psi_{1}-2\psi_{2}}\oplus V_{\omega_{3}-3\psi_{1}-2\psi_{2}} \oplus V_{-4\psi_{1}-4\psi_{2}}
Made total 446 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra 4A^{1}_1C^{1}_5
95 out of 119
Subalgebra type: \displaystyle 4A^{1}_1 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle 3A^{1}_1 .
Centralizer: \displaystyle A^{1}_1 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_4
Basis of Cartan of centralizer: 1 vectors: (0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \displaystyle 5A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{1}_1: (2, 2, 2, 2, 1): 2, \displaystyle A^{1}_1: (0, 2, 2, 2, 1): 2, \displaystyle A^{1}_1: (0, 0, 2, 2, 1): 2, \displaystyle A^{1}_1: (0, 0, 0, 2, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 12.
Negative simple generators: \displaystyle g_{-25}, \displaystyle g_{-23}, \displaystyle g_{-19}, \displaystyle g_{-13}
Positive simple generators: \displaystyle g_{25}, \displaystyle g_{23}, \displaystyle g_{19}, \displaystyle g_{13}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & 0 & 0 & 0\\ 0 & 2 & 0 & 0\\ 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & 0 & 0 & 0\\ 0 & 2 & 0 & 0\\ 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{4}}\oplus V_{\omega_{3}+\omega_{4}}\oplus V_{\omega_{2}+\omega_{4}}\oplus V_{\omega_{1}+\omega_{4}}\oplus V_{2\omega_{3}} \oplus V_{\omega_{2}+\omega_{3}}\oplus V_{\omega_{1}+\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{\omega_{1}+\omega_{2}}\oplus V_{2\omega_{1}} \oplus 2V_{\omega_{4}}\oplus 2V_{\omega_{3}}\oplus 2V_{\omega_{2}}\oplus 2V_{\omega_{1}}\oplus 3V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{4\psi}\oplus V_{\omega_{4}+2\psi}\oplus V_{\omega_{3}+2\psi}\oplus V_{\omega_{2}+2\psi}\oplus V_{\omega_{1}+2\psi}\oplus V_{2\omega_{4}} \oplus V_{\omega_{3}+\omega_{4}}\oplus V_{\omega_{2}+\omega_{4}}\oplus V_{\omega_{1}+\omega_{4}}\oplus V_{2\omega_{3}}\oplus V_{\omega_{2}+\omega_{3}} \oplus V_{\omega_{1}+\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{\omega_{1}+\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{0}\oplus V_{\omega_{4}-2\psi} \oplus V_{\omega_{3}-2\psi}\oplus V_{\omega_{2}-2\psi}\oplus V_{\omega_{1}-2\psi}\oplus V_{-4\psi}
Made total 541 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{2}_1+3A^{1}_1C^{1}_5
96 out of 119
Subalgebra type: \displaystyle A^{2}_1+3A^{1}_1 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle A^{2}_1+2A^{1}_1 .
Centralizer: \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5
Basis of Cartan of centralizer: 1 vectors: (1, 0, 0, 0, 0)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{2}_1: (2, 4, 4, 4, 2): 4, \displaystyle A^{1}_1: (0, 0, 2, 2, 1): 2, \displaystyle A^{1}_1: (0, 0, 0, 2, 1): 2, \displaystyle A^{1}_1: (0, 0, 0, 0, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 12.
Negative simple generators: \displaystyle g_{-24}, \displaystyle g_{-19}, \displaystyle g_{-13}, \displaystyle g_{-5}
Positive simple generators: \displaystyle g_{24}, \displaystyle g_{19}, \displaystyle g_{13}, \displaystyle g_{5}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1 & 0 & 0 & 0\\ 0 & 2 & 0 & 0\\ 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}4 & 0 & 0 & 0\\ 0 & 2 & 0 & 0\\ 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{4}}\oplus V_{\omega_{3}+\omega_{4}}\oplus V_{\omega_{2}+\omega_{4}}\oplus 2V_{\omega_{1}+\omega_{4}}\oplus V_{2\omega_{3}} \oplus V_{\omega_{2}+\omega_{3}}\oplus 2V_{\omega_{1}+\omega_{3}}\oplus V_{2\omega_{2}}\oplus 2V_{\omega_{1}+\omega_{2}}\oplus 3V_{2\omega_{1}} \oplus V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{2\omega_{1}+2\psi}\oplus V_{\omega_{1}+\omega_{4}+\psi}\oplus V_{\omega_{1}+\omega_{3}+\psi}\oplus V_{\omega_{1}+\omega_{2}+\psi} \oplus V_{2\omega_{4}}\oplus V_{\omega_{3}+\omega_{4}}\oplus V_{\omega_{2}+\omega_{4}}\oplus V_{2\omega_{3}}\oplus V_{\omega_{2}+\omega_{3}} \oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}\oplus V_{\omega_{1}+\omega_{4}-\psi}\oplus V_{\omega_{1}+\omega_{3}-\psi}\oplus V_{\omega_{1}+\omega_{2}-\psi} \oplus V_{0}\oplus V_{2\omega_{1}-2\psi}
Made total 61833 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra 3A^{4}_1+A^{1}_1C^{1}_5
97 out of 119
Subalgebra type: \displaystyle 3A^{4}_1+A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle 3A^{4}_1 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{4}_1: (2, 4, 6, 8, 4): 8, \displaystyle A^{4}_1: (2, 4, 2, 0, 0): 8, \displaystyle A^{4}_1: (2, 0, 2, 0, 0): 8, \displaystyle A^{1}_1: (0, 0, 0, 0, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 12.
Negative simple generators: \displaystyle g_{-20}+g_{-21}, \displaystyle -g_{-6}+g_{-7}, \displaystyle -g_{-1}+g_{-3}, \displaystyle g_{-5}
Positive simple generators: \displaystyle g_{21}+g_{20}, \displaystyle g_{7}-g_{6}, \displaystyle g_{3}-g_{1}, \displaystyle g_{5}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/2 & 0 & 0 & 0\\ 0 & 1/2 & 0 & 0\\ 0 & 0 & 1/2 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}8 & 0 & 0 & 0\\ 0 & 8 & 0 & 0\\ 0 & 0 & 8 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{1}+2\omega_{2}+2\omega_{3}}\oplus V_{\omega_{1}+\omega_{2}+\omega_{3}+\omega_{4}}\oplus V_{2\omega_{4}} \oplus V_{2\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}
Made total 802 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{8}_1+A^{3}_1+2A^{1}_1C^{1}_5
98 out of 119
Subalgebra type: \displaystyle A^{8}_1+A^{3}_1+2A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{8}_1+A^{3}_1+A^{1}_1 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{8}_1: (4, 8, 8, 8, 4): 16, \displaystyle A^{3}_1: (2, 0, 2, 2, 1): 6, \displaystyle A^{1}_1: (0, 0, 0, 2, 1): 2, \displaystyle A^{1}_1: (0, 0, 0, 0, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 12.
Negative simple generators: \displaystyle g_{-6}+g_{-21}, \displaystyle g_{-1}+g_{-19}, \displaystyle g_{-13}, \displaystyle g_{-5}
Positive simple generators: \displaystyle 2g_{21}+2g_{6}, \displaystyle g_{19}+g_{1}, \displaystyle g_{13}, \displaystyle g_{5}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/4 & 0 & 0 & 0\\ 0 & 2/3 & 0 & 0\\ 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}16 & 0 & 0 & 0\\ 0 & 6 & 0 & 0\\ 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{4\omega_{1}+2\omega_{2}}\oplus V_{2\omega_{1}+\omega_{2}+\omega_{4}}\oplus V_{2\omega_{1}+\omega_{2}+\omega_{3}} \oplus V_{2\omega_{4}}\oplus V_{\omega_{3}+\omega_{4}}\oplus V_{2\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{2\omega_{1}}
Made total 723 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{10}_1+3A^{1}_1C^{1}_5
99 out of 119
Subalgebra type: \displaystyle A^{10}_1+3A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle A^{10}_1+2A^{1}_1 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{10}_1: (6, 8, 8, 8, 4): 20, \displaystyle A^{1}_1: (0, 0, 2, 2, 1): 2, \displaystyle A^{1}_1: (0, 0, 0, 2, 1): 2, \displaystyle A^{1}_1: (0, 0, 0, 0, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 12.
Negative simple generators: \displaystyle g_{-1}+g_{-23}, \displaystyle g_{-19}, \displaystyle g_{-13}, \displaystyle g_{-5}
Positive simple generators: \displaystyle 4g_{23}+3g_{1}, \displaystyle g_{19}, \displaystyle g_{13}, \displaystyle g_{5}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1/5 & 0 & 0 & 0\\ 0 & 2 & 0 & 0\\ 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}20 & 0 & 0 & 0\\ 0 & 2 & 0 & 0\\ 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{6\omega_{1}}\oplus V_{3\omega_{1}+\omega_{4}}\oplus V_{3\omega_{1}+\omega_{3}}\oplus V_{3\omega_{1}+\omega_{2}}\oplus V_{2\omega_{4}} \oplus V_{\omega_{3}+\omega_{4}}\oplus V_{\omega_{2}+\omega_{4}}\oplus V_{2\omega_{3}}\oplus V_{\omega_{2}+\omega_{3}}\oplus V_{2\omega_{2}} \oplus V_{2\omega_{1}}
Made total 626 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra B^{1}_2+2A^{1}_1C^{1}_5
100 out of 119
Subalgebra type: \displaystyle B^{1}_2+2A^{1}_1 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle B^{1}_2+A^{1}_1 .
Centralizer: \displaystyle A^{1}_1 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_4
Basis of Cartan of centralizer: 1 vectors: (0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \displaystyle B^{1}_2+3A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle B^{1}_2: (2, 2, 2, 2, 1): 2, (-2, 0, 0, 0, 0): 4, \displaystyle A^{1}_1: (0, 0, 2, 2, 1): 2, \displaystyle A^{1}_1: (0, 0, 0, 2, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 16.
Negative simple generators: \displaystyle g_{-25}, \displaystyle g_{1}, \displaystyle g_{-19}, \displaystyle g_{-13}
Positive simple generators: \displaystyle g_{25}, \displaystyle g_{-1}, \displaystyle g_{19}, \displaystyle g_{13}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & -1 & 0 & 0\\ -1 & 1 & 0 & 0\\ 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & -2 & 0 & 0\\ -2 & 4 & 0 & 0\\ 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{4}}\oplus V_{\omega_{3}+\omega_{4}}\oplus V_{\omega_{2}+\omega_{4}}\oplus V_{2\omega_{3}}\oplus V_{\omega_{2}+\omega_{3}} \oplus V_{2\omega_{2}}\oplus 2V_{\omega_{4}}\oplus 2V_{\omega_{3}}\oplus 2V_{\omega_{2}}\oplus 3V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{4\psi}\oplus V_{\omega_{4}+2\psi}\oplus V_{\omega_{3}+2\psi}\oplus V_{\omega_{2}+2\psi}\oplus V_{2\omega_{4}}\oplus V_{\omega_{3}+\omega_{4}} \oplus V_{\omega_{2}+\omega_{4}}\oplus V_{2\omega_{3}}\oplus V_{\omega_{2}+\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{0}\oplus V_{\omega_{4}-2\psi} \oplus V_{\omega_{3}-2\psi}\oplus V_{\omega_{2}-2\psi}\oplus V_{-4\psi}
Made total 535 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra B^{1}_2+A^{2}_1+A^{1}_1C^{1}_5
101 out of 119
Subalgebra type: \displaystyle B^{1}_2+A^{2}_1+A^{1}_1 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle B^{1}_2+A^{2}_1 .
Centralizer: \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5
Basis of Cartan of centralizer: 1 vectors: (0, 0, 1, 0, 0)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle B^{1}_2: (2, 2, 2, 2, 1): 2, (-2, 0, 0, 0, 0): 4, \displaystyle A^{2}_1: (0, 0, 2, 4, 2): 4, \displaystyle A^{1}_1: (0, 0, 0, 0, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 16.
Negative simple generators: \displaystyle g_{-25}, \displaystyle g_{1}, \displaystyle g_{-16}, \displaystyle g_{-5}
Positive simple generators: \displaystyle g_{25}, \displaystyle g_{-1}, \displaystyle g_{16}, \displaystyle g_{5}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & -1 & 0 & 0\\ -1 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & -2 & 0 & 0\\ -2 & 4 & 0 & 0\\ 0 & 0 & 4 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{4}}\oplus 2V_{\omega_{3}+\omega_{4}}\oplus V_{\omega_{2}+\omega_{4}}\oplus 3V_{2\omega_{3}}\oplus 2V_{\omega_{2}+\omega_{3}} \oplus V_{2\omega_{2}}\oplus V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{2\omega_{3}+2\psi}\oplus V_{\omega_{3}+\omega_{4}+\psi}\oplus V_{\omega_{2}+\omega_{3}+\psi}\oplus V_{2\omega_{4}}\oplus V_{\omega_{2}+\omega_{4}} \oplus V_{2\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{\omega_{3}+\omega_{4}-\psi}\oplus V_{\omega_{2}+\omega_{3}-\psi}\oplus V_{0}\oplus V_{2\omega_{3}-2\psi}
Made total 62956 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra B^{1}_2+A^{8}_1+A^{3}_1C^{1}_5
102 out of 119
Subalgebra type: \displaystyle B^{1}_2+A^{8}_1+A^{3}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle B^{1}_2+A^{8}_1 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5

Elements Cartan subalgebra scaled to act by two by components: \displaystyle B^{1}_2: (2, 2, 2, 2, 1): 2, (-2, 0, 0, 0, 0): 4, \displaystyle A^{8}_1: (0, 0, 4, 8, 4): 16, \displaystyle A^{3}_1: (0, 0, 2, 0, 1): 6
Dimension of subalgebra generated by predefined or computed generators: 16.
Negative simple generators: \displaystyle g_{-25}, \displaystyle g_{1}, \displaystyle g_{-8}+g_{-9}, \displaystyle g_{-3}+g_{-5}
Positive simple generators: \displaystyle g_{25}, \displaystyle g_{-1}, \displaystyle 2g_{9}+2g_{8}, \displaystyle g_{5}+g_{3}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & -1 & 0 & 0\\ -1 & 1 & 0 & 0\\ 0 & 0 & 1/4 & 0\\ 0 & 0 & 0 & 2/3\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & -2 & 0 & 0\\ -2 & 4 & 0 & 0\\ 0 & 0 & 16 & 0\\ 0 & 0 & 0 & 6\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{4\omega_{3}+2\omega_{4}}\oplus V_{\omega_{2}+2\omega_{3}+\omega_{4}}\oplus V_{2\omega_{4}}\oplus V_{2\omega_{3}}\oplus V_{2\omega_{2}}
Made total 1467538 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra B^{1}_2+A^{10}_1+A^{1}_1C^{1}_5
103 out of 119
Subalgebra type: \displaystyle B^{1}_2+A^{10}_1+A^{1}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle B^{1}_2+A^{10}_1 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5

Elements Cartan subalgebra scaled to act by two by components: \displaystyle B^{1}_2: (2, 2, 2, 2, 1): 2, (-2, 0, 0, 0, 0): 4, \displaystyle A^{10}_1: (0, 0, 6, 8, 4): 20, \displaystyle A^{1}_1: (0, 0, 0, 0, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 16.
Negative simple generators: \displaystyle g_{-25}, \displaystyle g_{1}, \displaystyle g_{-3}+g_{-13}, \displaystyle g_{-5}
Positive simple generators: \displaystyle g_{25}, \displaystyle g_{-1}, \displaystyle 4g_{13}+3g_{3}, \displaystyle g_{5}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & -1 & 0 & 0\\ -1 & 1 & 0 & 0\\ 0 & 0 & 1/5 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & -2 & 0 & 0\\ -2 & 4 & 0 & 0\\ 0 & 0 & 20 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{6\omega_{3}}\oplus V_{3\omega_{3}+\omega_{4}}\oplus V_{\omega_{2}+3\omega_{3}}\oplus V_{2\omega_{4}}\oplus V_{\omega_{2}+\omega_{4}} \oplus V_{2\omega_{3}}\oplus V_{2\omega_{2}}
Made total 622 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra 2B^{1}_2C^{1}_5
104 out of 119
Subalgebra type: \displaystyle 2B^{1}_2 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle B^{1}_2+A^{1}_1 .
Centralizer: \displaystyle A^{1}_1 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_4
Basis of Cartan of centralizer: 1 vectors: (0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \displaystyle 2B^{1}_2+A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle B^{1}_2: (2, 2, 2, 2, 1): 2, (-2, 0, 0, 0, 0): 4, \displaystyle B^{1}_2: (0, 0, 2, 2, 1): 2, (0, 0, -2, 0, 0): 4
Dimension of subalgebra generated by predefined or computed generators: 20.
Negative simple generators: \displaystyle g_{-25}, \displaystyle g_{1}, \displaystyle g_{-19}, \displaystyle g_{3}
Positive simple generators: \displaystyle g_{25}, \displaystyle g_{-1}, \displaystyle g_{19}, \displaystyle g_{-3}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & -1 & 0 & 0\\ -1 & 1 & 0 & 0\\ 0 & 0 & 2 & -1\\ 0 & 0 & -1 & 1\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & -2 & 0 & 0\\ -2 & 4 & 0 & 0\\ 0 & 0 & 2 & -2\\ 0 & 0 & -2 & 4\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{4}}\oplus V_{\omega_{2}+\omega_{4}}\oplus V_{2\omega_{2}}\oplus 2V_{\omega_{4}}\oplus 2V_{\omega_{2}}\oplus 3V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{4\psi}\oplus V_{\omega_{4}+2\psi}\oplus V_{\omega_{2}+2\psi}\oplus V_{2\omega_{4}}\oplus V_{\omega_{2}+\omega_{4}}\oplus V_{2\omega_{2}} \oplus V_{0}\oplus V_{\omega_{4}-2\psi}\oplus V_{\omega_{2}-2\psi}\oplus V_{-4\psi}
Made total 533 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{2}_2+2A^{1}_1C^{1}_5
105 out of 119
Subalgebra type: \displaystyle A^{2}_2+2A^{1}_1 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle A^{2}_2+A^{1}_1 .
Centralizer: \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5
Basis of Cartan of centralizer: 1 vectors: (2, 0, -2, -2, -1)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{2}_2: (2, 4, 4, 4, 2): 4, (0, -2, 0, 0, 0): 4, \displaystyle A^{1}_1: (0, 0, 0, 2, 1): 2, \displaystyle A^{1}_1: (0, 0, 0, 0, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 14.
Negative simple generators: \displaystyle g_{-24}, \displaystyle g_{2}, \displaystyle g_{-13}, \displaystyle g_{-5}
Positive simple generators: \displaystyle g_{24}, \displaystyle g_{-2}, \displaystyle g_{13}, \displaystyle g_{5}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1 & -1/2 & 0 & 0\\ -1/2 & 1 & 0 & 0\\ 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}4 & -2 & 0 & 0\\ -2 & 4 & 0 & 0\\ 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{4}}\oplus V_{\omega_{3}+\omega_{4}}\oplus V_{\omega_{2}+\omega_{4}}\oplus V_{\omega_{1}+\omega_{4}}\oplus V_{2\omega_{3}} \oplus V_{\omega_{2}+\omega_{3}}\oplus V_{\omega_{1}+\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{\omega_{1}+\omega_{2}}\oplus V_{2\omega_{1}} \oplus V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{2\omega_{1}+4\psi}\oplus V_{\omega_{1}+\omega_{4}+2\psi}\oplus V_{\omega_{1}+\omega_{3}+2\psi}\oplus V_{2\omega_{4}}\oplus V_{\omega_{3}+\omega_{4}} \oplus V_{2\omega_{3}}\oplus V_{\omega_{1}+\omega_{2}}\oplus V_{0}\oplus V_{\omega_{2}+\omega_{4}-2\psi}\oplus V_{\omega_{2}+\omega_{3}-2\psi} \oplus V_{2\omega_{2}-4\psi}
Made total 531 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{2}_2+B^{1}_2C^{1}_5
106 out of 119
Subalgebra type: \displaystyle A^{2}_2+B^{1}_2 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle A^{2}_2+A^{1}_1 .
Centralizer: \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5
Basis of Cartan of centralizer: 1 vectors: (2, 0, -2, -2, -1)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{2}_2: (2, 4, 4, 4, 2): 4, (0, -2, 0, 0, 0): 4, \displaystyle B^{1}_2: (0, 0, 0, 2, 1): 2, (0, 0, 0, -2, 0): 4
Dimension of subalgebra generated by predefined or computed generators: 18.
Negative simple generators: \displaystyle g_{-24}, \displaystyle g_{2}, \displaystyle g_{-13}, \displaystyle g_{4}
Positive simple generators: \displaystyle g_{24}, \displaystyle g_{-2}, \displaystyle g_{13}, \displaystyle g_{-4}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1 & -1/2 & 0 & 0\\ -1/2 & 1 & 0 & 0\\ 0 & 0 & 2 & -1\\ 0 & 0 & -1 & 1\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}4 & -2 & 0 & 0\\ -2 & 4 & 0 & 0\\ 0 & 0 & 2 & -2\\ 0 & 0 & -2 & 4\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{4}}\oplus V_{\omega_{2}+\omega_{4}}\oplus V_{\omega_{1}+\omega_{4}}\oplus V_{2\omega_{2}}\oplus V_{\omega_{1}+\omega_{2}} \oplus V_{2\omega_{1}}\oplus V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{2\omega_{1}+4\psi}\oplus V_{\omega_{1}+\omega_{4}+2\psi}\oplus V_{2\omega_{4}}\oplus V_{\omega_{1}+\omega_{2}}\oplus V_{0}\oplus V_{\omega_{2}+\omega_{4}-2\psi} \oplus V_{2\omega_{2}-4\psi}
Made total 539 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra C^{1}_3+A^{1}_1C^{1}_5
107 out of 119
Subalgebra type: \displaystyle C^{1}_3+A^{1}_1 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle C^{1}_3 .
Centralizer: \displaystyle A^{1}_1 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_4
Basis of Cartan of centralizer: 1 vectors: (0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \displaystyle C^{1}_3+2A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle C^{1}_3: (2, 4, 4, 4, 2): 4, (0, -2, 0, 0, 0): 4, (0, 0, -2, -2, -1): 2, \displaystyle A^{1}_1: (0, 0, 0, 2, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 24.
Negative simple generators: \displaystyle g_{-24}, \displaystyle g_{2}, \displaystyle g_{19}, \displaystyle g_{-13}
Positive simple generators: \displaystyle g_{24}, \displaystyle g_{-2}, \displaystyle g_{-19}, \displaystyle g_{13}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1 & -1/2 & 0 & 0\\ -1/2 & 1 & -1 & 0\\ 0 & -1 & 2 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}4 & -2 & 0 & 0\\ -2 & 4 & -2 & 0\\ 0 & -2 & 2 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{4}}\oplus V_{\omega_{1}+\omega_{4}}\oplus V_{2\omega_{1}}\oplus 2V_{\omega_{4}}\oplus 2V_{\omega_{1}}\oplus 3V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{4\psi}\oplus V_{\omega_{4}+2\psi}\oplus V_{\omega_{1}+2\psi}\oplus V_{2\omega_{4}}\oplus V_{\omega_{1}+\omega_{4}}\oplus V_{2\omega_{1}} \oplus V_{0}\oplus V_{\omega_{4}-2\psi}\oplus V_{\omega_{1}-2\psi}\oplus V_{-4\psi}
Made total 535 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra C^{1}_3+A^{2}_1C^{1}_5
108 out of 119
Subalgebra type: \displaystyle C^{1}_3+A^{2}_1 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle C^{1}_3 .
Centralizer: \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5
Basis of Cartan of centralizer: 1 vectors: (0, 0, 0, 1, 0)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle C^{1}_3: (2, 4, 4, 4, 2): 4, (0, -2, 0, 0, 0): 4, (0, 0, -2, -2, -1): 2, \displaystyle A^{2}_1: (0, 0, 0, 2, 2): 4
Dimension of subalgebra generated by predefined or computed generators: 24.
Negative simple generators: \displaystyle g_{-24}, \displaystyle g_{2}, \displaystyle g_{19}, \displaystyle g_{-9}
Positive simple generators: \displaystyle g_{24}, \displaystyle g_{-2}, \displaystyle g_{-19}, \displaystyle g_{9}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1 & -1/2 & 0 & 0\\ -1/2 & 1 & -1 & 0\\ 0 & -1 & 2 & 0\\ 0 & 0 & 0 & 1\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}4 & -2 & 0 & 0\\ -2 & 4 & -2 & 0\\ 0 & -2 & 2 & 0\\ 0 & 0 & 0 & 4\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle 3V_{2\omega_{4}}\oplus 2V_{\omega_{1}+\omega_{4}}\oplus V_{2\omega_{1}}\oplus V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{2\omega_{4}+2\psi}\oplus V_{\omega_{1}+\omega_{4}+\psi}\oplus V_{2\omega_{4}}\oplus V_{2\omega_{1}}\oplus V_{\omega_{1}+\omega_{4}-\psi} \oplus V_{0}\oplus V_{2\omega_{4}-2\psi}
Made total 1037773 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra C^{1}_3+A^{10}_1C^{1}_5
109 out of 119
Subalgebra type: \displaystyle C^{1}_3+A^{10}_1 (click on type for detailed printout).
Subalgebra is (parabolically) induced from \displaystyle C^{1}_3 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5

Elements Cartan subalgebra scaled to act by two by components: \displaystyle C^{1}_3: (2, 4, 4, 4, 2): 4, (0, -2, 0, 0, 0): 4, (0, 0, -2, -2, -1): 2, \displaystyle A^{10}_1: (0, 0, 0, 6, 4): 20
Dimension of subalgebra generated by predefined or computed generators: 24.
Negative simple generators: \displaystyle g_{-24}, \displaystyle g_{2}, \displaystyle g_{19}, \displaystyle g_{-4}+g_{-5}
Positive simple generators: \displaystyle g_{24}, \displaystyle g_{-2}, \displaystyle g_{-19}, \displaystyle 4g_{5}+3g_{4}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1 & -1/2 & 0 & 0\\ -1/2 & 1 & -1 & 0\\ 0 & -1 & 2 & 0\\ 0 & 0 & 0 & 1/5\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}4 & -2 & 0 & 0\\ -2 & 4 & -2 & 0\\ 0 & -2 & 2 & 0\\ 0 & 0 & 0 & 20\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{6\omega_{4}}\oplus V_{\omega_{1}+3\omega_{4}}\oplus V_{2\omega_{4}}\oplus V_{2\omega_{1}}
Made total 3334 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{2}_3+A^{1}_1C^{1}_5
110 out of 119
Subalgebra type: \displaystyle A^{2}_3+A^{1}_1 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle A^{2}_3 .
Centralizer: \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5
Basis of Cartan of centralizer: 1 vectors: (1, 0, -1, -2, -1)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{2}_3: (2, 4, 4, 4, 2): 4, (0, -2, 0, 0, 0): 4, (0, 0, -2, 0, 0): 4, \displaystyle A^{1}_1: (0, 0, 0, 0, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 18.
Negative simple generators: \displaystyle g_{-24}, \displaystyle g_{2}, \displaystyle g_{3}, \displaystyle g_{-5}
Positive simple generators: \displaystyle g_{24}, \displaystyle g_{-2}, \displaystyle g_{-3}, \displaystyle g_{5}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1 & -1/2 & 0 & 0\\ -1/2 & 1 & -1/2 & 0\\ 0 & -1/2 & 1 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}4 & -2 & 0 & 0\\ -2 & 4 & -2 & 0\\ 0 & -2 & 4 & 0\\ 0 & 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{4}}\oplus V_{\omega_{3}+\omega_{4}}\oplus V_{\omega_{1}+\omega_{4}}\oplus V_{2\omega_{3}}\oplus V_{\omega_{1}+\omega_{3}} \oplus V_{2\omega_{1}}\oplus V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{2\omega_{1}+2\psi}\oplus V_{\omega_{1}+\omega_{4}+\psi}\oplus V_{2\omega_{4}}\oplus V_{\omega_{1}+\omega_{3}}\oplus V_{\omega_{3}+\omega_{4}-\psi} \oplus V_{0}\oplus V_{2\omega_{3}-2\psi}
Made total 529 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra C^{1}_4C^{1}_5
111 out of 119
Subalgebra type: \displaystyle C^{1}_4 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle A^{2}_3 .
Centralizer: \displaystyle A^{1}_1 .
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_4
Basis of Cartan of centralizer: 1 vectors: (0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: \displaystyle C^{1}_4+A^{1}_1 .

Elements Cartan subalgebra scaled to act by two by components: \displaystyle C^{1}_4: (2, 4, 4, 4, 2): 4, (0, -2, 0, 0, 0): 4, (0, 0, -2, 0, 0): 4, (0, 0, 0, -2, -1): 2
Dimension of subalgebra generated by predefined or computed generators: 36.
Negative simple generators: \displaystyle g_{-24}, \displaystyle g_{2}, \displaystyle g_{3}, \displaystyle g_{13}
Positive simple generators: \displaystyle g_{24}, \displaystyle g_{-2}, \displaystyle g_{-3}, \displaystyle g_{-13}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1 & -1/2 & 0 & 0\\ -1/2 & 1 & -1/2 & 0\\ 0 & -1/2 & 1 & -1\\ 0 & 0 & -1 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}4 & -2 & 0 & 0\\ -2 & 4 & -2 & 0\\ 0 & -2 & 4 & -2\\ 0 & 0 & -2 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{1}}\oplus 2V_{\omega_{1}}\oplus 3V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{4\psi}\oplus V_{\omega_{1}+2\psi}\oplus V_{2\omega_{1}}\oplus V_{0}\oplus V_{\omega_{1}-2\psi}\oplus V_{-4\psi}
Made total 531 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra A^{2}_4C^{1}_5
112 out of 119
Subalgebra type: \displaystyle A^{2}_4 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle A^{2}_3 .
Centralizer: \displaystyle T_{1} (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5
Basis of Cartan of centralizer: 1 vectors: (2, 0, -2, -4, -3)

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{2}_4: (2, 4, 4, 4, 2): 4, (0, -2, 0, 0, 0): 4, (0, 0, -2, 0, 0): 4, (0, 0, 0, -2, 0): 4
Dimension of subalgebra generated by predefined or computed generators: 24.
Negative simple generators: \displaystyle g_{-24}, \displaystyle g_{2}, \displaystyle g_{3}, \displaystyle g_{4}
Positive simple generators: \displaystyle g_{24}, \displaystyle g_{-2}, \displaystyle g_{-3}, \displaystyle g_{-4}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1 & -1/2 & 0 & 0\\ -1/2 & 1 & -1/2 & 0\\ 0 & -1/2 & 1 & -1/2\\ 0 & 0 & -1/2 & 1\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}4 & -2 & 0 & 0\\ -2 & 4 & -2 & 0\\ 0 & -2 & 4 & -2\\ 0 & 0 & -2 & 4\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{4}}\oplus V_{\omega_{1}+\omega_{4}}\oplus V_{2\omega_{1}}\oplus V_{0}
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). \displaystyle V_{2\omega_{1}+4\psi}\oplus V_{\omega_{1}+\omega_{4}}\oplus V_{0}\oplus V_{2\omega_{4}-4\psi}
Made total 529 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra 5A^{1}_1C^{1}_5
113 out of 119
Subalgebra type: \displaystyle 5A^{1}_1 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle 4A^{1}_1 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5

Elements Cartan subalgebra scaled to act by two by components: \displaystyle A^{1}_1: (2, 2, 2, 2, 1): 2, \displaystyle A^{1}_1: (0, 2, 2, 2, 1): 2, \displaystyle A^{1}_1: (0, 0, 2, 2, 1): 2, \displaystyle A^{1}_1: (0, 0, 0, 2, 1): 2, \displaystyle A^{1}_1: (0, 0, 0, 0, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 15.
Negative simple generators: \displaystyle g_{-25}, \displaystyle g_{-23}, \displaystyle g_{-19}, \displaystyle g_{-13}, \displaystyle g_{-5}
Positive simple generators: \displaystyle g_{25}, \displaystyle g_{23}, \displaystyle g_{19}, \displaystyle g_{13}, \displaystyle g_{5}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & 0 & 0 & 0 & 0\\ 0 & 2 & 0 & 0 & 0\\ 0 & 0 & 2 & 0 & 0\\ 0 & 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & 0 & 0 & 0 & 0\\ 0 & 2 & 0 & 0 & 0\\ 0 & 0 & 2 & 0 & 0\\ 0 & 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{5}}\oplus V_{\omega_{4}+\omega_{5}}\oplus V_{\omega_{3}+\omega_{5}}\oplus V_{\omega_{2}+\omega_{5}}\oplus V_{\omega_{1}+\omega_{5}} \oplus V_{2\omega_{4}}\oplus V_{\omega_{3}+\omega_{4}}\oplus V_{\omega_{2}+\omega_{4}}\oplus V_{\omega_{1}+\omega_{4}}\oplus V_{2\omega_{3}} \oplus V_{\omega_{2}+\omega_{3}}\oplus V_{\omega_{1}+\omega_{3}}\oplus V_{2\omega_{2}}\oplus V_{\omega_{1}+\omega_{2}}\oplus V_{2\omega_{1}}
Made total 624 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra B^{1}_2+3A^{1}_1C^{1}_5
114 out of 119
Subalgebra type: \displaystyle B^{1}_2+3A^{1}_1 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle B^{1}_2+2A^{1}_1 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5

Elements Cartan subalgebra scaled to act by two by components: \displaystyle B^{1}_2: (2, 2, 2, 2, 1): 2, (-2, 0, 0, 0, 0): 4, \displaystyle A^{1}_1: (0, 0, 2, 2, 1): 2, \displaystyle A^{1}_1: (0, 0, 0, 2, 1): 2, \displaystyle A^{1}_1: (0, 0, 0, 0, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 19.
Negative simple generators: \displaystyle g_{-25}, \displaystyle g_{1}, \displaystyle g_{-19}, \displaystyle g_{-13}, \displaystyle g_{-5}
Positive simple generators: \displaystyle g_{25}, \displaystyle g_{-1}, \displaystyle g_{19}, \displaystyle g_{13}, \displaystyle g_{5}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & -1 & 0 & 0 & 0\\ -1 & 1 & 0 & 0 & 0\\ 0 & 0 & 2 & 0 & 0\\ 0 & 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & -2 & 0 & 0 & 0\\ -2 & 4 & 0 & 0 & 0\\ 0 & 0 & 2 & 0 & 0\\ 0 & 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{5}}\oplus V_{\omega_{4}+\omega_{5}}\oplus V_{\omega_{3}+\omega_{5}}\oplus V_{\omega_{2}+\omega_{5}}\oplus V_{2\omega_{4}} \oplus V_{\omega_{3}+\omega_{4}}\oplus V_{\omega_{2}+\omega_{4}}\oplus V_{2\omega_{3}}\oplus V_{\omega_{2}+\omega_{3}}\oplus V_{2\omega_{2}}
Made total 618 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra 2B^{1}_2+A^{1}_1C^{1}_5
115 out of 119
Subalgebra type: \displaystyle 2B^{1}_2+A^{1}_1 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle 2B^{1}_2 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5

Elements Cartan subalgebra scaled to act by two by components: \displaystyle B^{1}_2: (2, 2, 2, 2, 1): 2, (-2, 0, 0, 0, 0): 4, \displaystyle B^{1}_2: (0, 0, 2, 2, 1): 2, (0, 0, -2, 0, 0): 4, \displaystyle A^{1}_1: (0, 0, 0, 0, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 23.
Negative simple generators: \displaystyle g_{-25}, \displaystyle g_{1}, \displaystyle g_{-19}, \displaystyle g_{3}, \displaystyle g_{-5}
Positive simple generators: \displaystyle g_{25}, \displaystyle g_{-1}, \displaystyle g_{19}, \displaystyle g_{-3}, \displaystyle g_{5}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}2 & -1 & 0 & 0 & 0\\ -1 & 1 & 0 & 0 & 0\\ 0 & 0 & 2 & -1 & 0\\ 0 & 0 & -1 & 1 & 0\\ 0 & 0 & 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}2 & -2 & 0 & 0 & 0\\ -2 & 4 & 0 & 0 & 0\\ 0 & 0 & 2 & -2 & 0\\ 0 & 0 & -2 & 4 & 0\\ 0 & 0 & 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{5}}\oplus V_{\omega_{4}+\omega_{5}}\oplus V_{\omega_{2}+\omega_{5}}\oplus V_{2\omega_{4}}\oplus V_{\omega_{2}+\omega_{4}} \oplus V_{2\omega_{2}}
Made total 616 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra C^{1}_3+2A^{1}_1C^{1}_5
116 out of 119
Subalgebra type: \displaystyle C^{1}_3+2A^{1}_1 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle C^{1}_3+A^{1}_1 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5

Elements Cartan subalgebra scaled to act by two by components: \displaystyle C^{1}_3: (2, 4, 4, 4, 2): 4, (0, -2, 0, 0, 0): 4, (0, 0, -2, -2, -1): 2, \displaystyle A^{1}_1: (0, 0, 0, 2, 1): 2, \displaystyle A^{1}_1: (0, 0, 0, 0, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 27.
Negative simple generators: \displaystyle g_{-24}, \displaystyle g_{2}, \displaystyle g_{19}, \displaystyle g_{-13}, \displaystyle g_{-5}
Positive simple generators: \displaystyle g_{24}, \displaystyle g_{-2}, \displaystyle g_{-19}, \displaystyle g_{13}, \displaystyle g_{5}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1 & -1/2 & 0 & 0 & 0\\ -1/2 & 1 & -1 & 0 & 0\\ 0 & -1 & 2 & 0 & 0\\ 0 & 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}4 & -2 & 0 & 0 & 0\\ -2 & 4 & -2 & 0 & 0\\ 0 & -2 & 2 & 0 & 0\\ 0 & 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{5}}\oplus V_{\omega_{4}+\omega_{5}}\oplus V_{\omega_{1}+\omega_{5}}\oplus V_{2\omega_{4}}\oplus V_{\omega_{1}+\omega_{4}} \oplus V_{2\omega_{1}}
Made total 618 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra C^{1}_3+B^{1}_2C^{1}_5
117 out of 119
Subalgebra type: \displaystyle C^{1}_3+B^{1}_2 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle C^{1}_3+A^{1}_1 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5

Elements Cartan subalgebra scaled to act by two by components: \displaystyle C^{1}_3: (2, 4, 4, 4, 2): 4, (0, -2, 0, 0, 0): 4, (0, 0, -2, -2, -1): 2, \displaystyle B^{1}_2: (0, 0, 0, 2, 1): 2, (0, 0, 0, -2, 0): 4
Dimension of subalgebra generated by predefined or computed generators: 31.
Negative simple generators: \displaystyle g_{-24}, \displaystyle g_{2}, \displaystyle g_{19}, \displaystyle g_{-13}, \displaystyle g_{4}
Positive simple generators: \displaystyle g_{24}, \displaystyle g_{-2}, \displaystyle g_{-19}, \displaystyle g_{13}, \displaystyle g_{-4}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1 & -1/2 & 0 & 0 & 0\\ -1/2 & 1 & -1 & 0 & 0\\ 0 & -1 & 2 & 0 & 0\\ 0 & 0 & 0 & 2 & -1\\ 0 & 0 & 0 & -1 & 1\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}4 & -2 & 0 & 0 & 0\\ -2 & 4 & -2 & 0 & 0\\ 0 & -2 & 2 & 0 & 0\\ 0 & 0 & 0 & 2 & -2\\ 0 & 0 & 0 & -2 & 4\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{5}}\oplus V_{\omega_{1}+\omega_{5}}\oplus V_{2\omega_{1}}
Made total 618 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra C^{1}_4+A^{1}_1C^{1}_5
118 out of 119
Subalgebra type: \displaystyle C^{1}_4+A^{1}_1 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle C^{1}_4 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5

Elements Cartan subalgebra scaled to act by two by components: \displaystyle C^{1}_4: (2, 4, 4, 4, 2): 4, (0, -2, 0, 0, 0): 4, (0, 0, -2, 0, 0): 4, (0, 0, 0, -2, -1): 2, \displaystyle A^{1}_1: (0, 0, 0, 0, 1): 2
Dimension of subalgebra generated by predefined or computed generators: 39.
Negative simple generators: \displaystyle g_{-24}, \displaystyle g_{2}, \displaystyle g_{3}, \displaystyle g_{13}, \displaystyle g_{-5}
Positive simple generators: \displaystyle g_{24}, \displaystyle g_{-2}, \displaystyle g_{-3}, \displaystyle g_{-13}, \displaystyle g_{5}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1 & -1/2 & 0 & 0 & 0\\ -1/2 & 1 & -1/2 & 0 & 0\\ 0 & -1/2 & 1 & -1 & 0\\ 0 & 0 & -1 & 2 & 0\\ 0 & 0 & 0 & 0 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}4 & -2 & 0 & 0 & 0\\ -2 & 4 & -2 & 0 & 0\\ 0 & -2 & 4 & -2 & 0\\ 0 & 0 & -2 & 2 & 0\\ 0 & 0 & 0 & 0 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{5}}\oplus V_{\omega_{1}+\omega_{5}}\oplus V_{2\omega_{1}}
Made total 614 arithmetic operations while solving the Serre relations polynomial system.
Subalgebra C^{1}_5C^{1}_5
119 out of 119
Subalgebra type: \displaystyle C^{1}_5 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from \displaystyle A^{2}_4 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \displaystyle C^{1}_5

Elements Cartan subalgebra scaled to act by two by components: \displaystyle C^{1}_5: (2, 4, 4, 4, 2): 4, (0, -2, 0, 0, 0): 4, (0, 0, -2, 0, 0): 4, (0, 0, 0, -2, 0): 4, (0, 0, 0, 0, -1): 2
Dimension of subalgebra generated by predefined or computed generators: 55.
Negative simple generators: \displaystyle g_{-24}, \displaystyle g_{2}, \displaystyle g_{3}, \displaystyle g_{4}, \displaystyle g_{5}
Positive simple generators: \displaystyle g_{24}, \displaystyle g_{-2}, \displaystyle g_{-3}, \displaystyle g_{-4}, \displaystyle g_{-5}
Cartan symmetric matrix: \displaystyle \begin{pmatrix}1 & -1/2 & 0 & 0 & 0\\ -1/2 & 1 & -1/2 & 0 & 0\\ 0 & -1/2 & 1 & -1/2 & 0\\ 0 & 0 & -1/2 & 1 & -1\\ 0 & 0 & 0 & -1 & 2\\ \end{pmatrix}
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \displaystyle \begin{pmatrix}4 & -2 & 0 & 0 & 0\\ -2 & 4 & -2 & 0 & 0\\ 0 & -2 & 4 & -2 & 0\\ 0 & 0 & -2 & 4 & -2\\ 0 & 0 & 0 & -2 & 2\\ \end{pmatrix}
Decomposition of ambient Lie algebra: \displaystyle V_{2\omega_{1}}
Made total 612 arithmetic operations while solving the Serre relations polynomial system.

Of the 23 h element conjugacy classes 14 had their Weyl group orbits computed and buffered. The h elements and their computed orbit sizes follow.
h elementorbit size
(18, 32, 42, 48, 25)size not computed
(14, 24, 30, 32, 17)size not computed
(14, 24, 30, 32, 16)size not computed
(10, 16, 22, 24, 13)960
(8, 16, 20, 24, 12)size not computed
(10, 16, 18, 20, 11)size not computed
(10, 16, 18, 20, 10)size not computed
(10, 16, 18, 18, 9)480
(6, 12, 14, 16, 9)size not computed
(6, 12, 14, 16, 8)480
(6, 10, 14, 16, 8)960
(6, 8, 10, 12, 7)size not computed
(6, 8, 10, 12, 6)size not computed
(6, 8, 10, 10, 5)240
(6, 8, 8, 8, 4)80
(4, 8, 10, 12, 6)480
(4, 8, 10, 10, 5)240
(4, 8, 8, 8, 4)40
(2, 4, 6, 8, 5)32
(2, 4, 6, 8, 4)80
(2, 4, 6, 6, 3)80
(2, 4, 4, 4, 2)40
(2, 2, 2, 2, 1)10

Number of sl(2) subalgebras: 23.
Let h be in the Cartan subalgebra. Let \alpha_1, ..., \alpha_n be simple roots with respect to h. Then the h-characteristic, as defined by E. Dynkin, is the n-tuple (\alpha_1(h), ..., \alpha_n(h)).

The actual realization of h. The coordinates of h are given with respect to the fixed original simple basis. Note that the h-characteristic is computed using a possibly different simple basis, more precisely, with respect to any h-positive simple basis.
A regular semisimple subalgebra might contain an sl(2) such that the sl(2) has no centralizer in the regular semisimple subalgebra, but the regular semisimple subalgebra might fail to be minimal containing. This happens when another minimal containing regular semisimple subalgebra of equal rank nests as a root subalgebra in the containing SA. See Dynkin, Semisimple Lie subalgebras of semisimple Lie algebras, remark before Theorem 10.4.
The sl(2) submodules of the ambient Lie algebra are parametrized by their highest weight with respect to the Cartan element h of sl(2). In turn, the highest weight is a positive integer multiple of the fundamental highest weight \psi. V_{l\psi} is l + 1-dimensional.


Type + realization linkh-CharacteristicRealization of hsl(2)-module decomposition of the ambient Lie algebra
\psi= the fundamental sl(2)-weight.
Centralizer dimensionType of semisimple part of centralizer, if knownThe square of the length of the weight dual to h.Dynkin index Minimal containing regular semisimple SAsContaining regular semisimple SAs in which the sl(2) has no centralizer
A^{165}_1(2, 2, 2, 2, 2)(18, 32, 42, 48, 25)V_{18\psi}+V_{14\psi}+V_{10\psi}+V_{6\psi}+V_{2\psi}
0 \displaystyle 0330165C^{1}_5; C^{1}_5;
A^{85}_1(2, 2, 2, 0, 2)(14, 24, 30, 32, 17)V_{14\psi}+V_{10\psi}+V_{8\psi}+2V_{6\psi}+2V_{2\psi}
0 \displaystyle 017085C^{1}_5; C^{1}_4+A^{1}_1; C^{1}_5; C^{1}_4+A^{1}_1;
A^{84}_1(2, 2, 2, 1, 0)(14, 24, 30, 32, 16)V_{14\psi}+V_{10\psi}+2V_{7\psi}+V_{6\psi}+V_{2\psi}+3V_{0}
3 \displaystyle A^{1}_116884C^{1}_4; C^{1}_4;
A^{45}_1(2, 0, 2, 0, 2)(10, 16, 22, 24, 13)V_{10\psi}+V_{8\psi}+3V_{6\psi}+V_{4\psi}+3V_{2\psi}
0 \displaystyle 09045C^{1}_5; C^{1}_3+B^{1}_2; C^{1}_5; C^{1}_3+B^{1}_2;
A^{40}_1(0, 2, 0, 2, 0)(8, 16, 20, 24, 12)3V_{8\psi}+V_{6\psi}+3V_{4\psi}+V_{2\psi}+3V_{0}
3 not computed8040A^{2}_4; A^{2}_4;
A^{37}_1(2, 2, 0, 0, 2)(10, 16, 18, 20, 11)V_{10\psi}+3V_{6\psi}+2V_{4\psi}+4V_{2\psi}+V_{0}
1 \displaystyle 07437C^{1}_4+A^{1}_1; C^{1}_3+2A^{1}_1; C^{1}_3+A^{2}_1; C^{1}_4+A^{1}_1; C^{1}_3+2A^{1}_1; C^{1}_3+A^{2}_1;
A^{36}_1(2, 2, 0, 1, 0)(10, 16, 18, 20, 10)V_{10\psi}+2V_{6\psi}+2V_{5\psi}+V_{4\psi}+2V_{2\psi}+2V_{\psi}+3V_{0}
3 \displaystyle A^{1}_17236C^{1}_4; C^{1}_3+A^{1}_1; C^{1}_4; C^{1}_3+A^{1}_1;
A^{35}_1(2, 2, 1, 0, 0)(10, 16, 18, 18, 9)V_{10\psi}+V_{6\psi}+4V_{5\psi}+V_{2\psi}+10V_{0}
10 \displaystyle B^{1}_27035C^{1}_3; C^{1}_3;
A^{21}_1(0, 2, 0, 0, 2)(6, 12, 14, 16, 9)3V_{6\psi}+3V_{4\psi}+6V_{2\psi}+V_{0}
1 \displaystyle 04221C^{1}_3+B^{1}_2; 2B^{1}_2+A^{1}_1; A^{2}_3+A^{1}_1; C^{1}_3+B^{1}_2; 2B^{1}_2+A^{1}_1; A^{2}_3+A^{1}_1;
A^{20}_1(0, 2, 0, 1, 0)(6, 12, 14, 16, 8)3V_{6\psi}+V_{4\psi}+4V_{3\psi}+3V_{2\psi}+4V_{0}
4 \displaystyle A^{1}_140202B^{1}_2; A^{2}_3; 2B^{1}_2; A^{2}_3;
A^{18}_1(1, 0, 1, 1, 0)(6, 10, 14, 16, 8)V_{6\psi}+2V_{5\psi}+3V_{4\psi}+2V_{3\psi}+2V_{2\psi}+2V_{\psi}+3V_{0}
3 not computed3618A^{2}_2+B^{1}_2; A^{2}_2+B^{1}_2;
A^{13}_1(2, 0, 0, 0, 2)(6, 8, 10, 12, 7)V_{6\psi}+3V_{4\psi}+10V_{2\psi}+3V_{0}
3 not computed2613C^{1}_3+2A^{1}_1; B^{1}_2+3A^{1}_1; C^{1}_3+A^{2}_1; B^{1}_2+A^{2}_1+A^{1}_1; C^{1}_3+2A^{1}_1; B^{1}_2+3A^{1}_1; C^{1}_3+A^{2}_1; B^{1}_2+A^{2}_1+A^{1}_1;
A^{12}_1(2, 0, 0, 1, 0)(6, 8, 10, 12, 6)V_{6\psi}+2V_{4\psi}+2V_{3\psi}+6V_{2\psi}+4V_{\psi}+4V_{0}
4 \displaystyle A^{1}_12412C^{1}_3+A^{1}_1; B^{1}_2+2A^{1}_1; B^{1}_2+A^{2}_1; C^{1}_3+A^{1}_1; B^{1}_2+2A^{1}_1; B^{1}_2+A^{2}_1;
A^{11}_1(2, 0, 1, 0, 0)(6, 8, 10, 10, 5)V_{6\psi}+V_{4\psi}+4V_{3\psi}+3V_{2\psi}+4V_{\psi}+10V_{0}
10 \displaystyle B^{1}_22211C^{1}_3; B^{1}_2+A^{1}_1; C^{1}_3; B^{1}_2+A^{1}_1;
A^{10}_1(2, 1, 0, 0, 0)(6, 8, 8, 8, 4)V_{6\psi}+6V_{3\psi}+V_{2\psi}+21V_{0}
21 \displaystyle C^{1}_32010B^{1}_2; B^{1}_2;
A^{10}_1(0, 1, 0, 1, 0)(4, 8, 10, 12, 6)3V_{4\psi}+4V_{3\psi}+4V_{2\psi}+4V_{\psi}+4V_{0}
4 not computed2010A^{2}_2+2A^{1}_1; A^{2}_2+A^{2}_1; A^{2}_2+2A^{1}_1; A^{2}_2+A^{2}_1;
A^{9}_1(0, 1, 1, 0, 0)(4, 8, 10, 10, 5)3V_{4\psi}+2V_{3\psi}+6V_{2\psi}+4V_{\psi}+6V_{0}
6 not computed189A^{2}_2+A^{1}_1; A^{2}_2+A^{1}_1;
A^{8}_1(0, 2, 0, 0, 0)(4, 8, 8, 8, 4)3V_{4\psi}+9V_{2\psi}+13V_{0}
13 not computed168A^{2}_2; A^{2}_2;
A^{5}_1(0, 0, 0, 0, 2)(2, 4, 6, 8, 5)15V_{2\psi}+10V_{0}
10 not computed1055A^{1}_1; A^{2}_1+3A^{1}_1; 2A^{2}_1+A^{1}_1; 5A^{1}_1; A^{2}_1+3A^{1}_1; 2A^{2}_1+A^{1}_1;
A^{4}_1(0, 0, 0, 1, 0)(2, 4, 6, 8, 4)10V_{2\psi}+8V_{\psi}+9V_{0}
9 not computed844A^{1}_1; A^{2}_1+2A^{1}_1; 2A^{2}_1; 4A^{1}_1; A^{2}_1+2A^{1}_1; 2A^{2}_1;
A^{3}_1(0, 0, 1, 0, 0)(2, 4, 6, 6, 3)6V_{2\psi}+12V_{\psi}+13V_{0}
13 not computed633A^{1}_1; A^{2}_1+A^{1}_1; 3A^{1}_1; A^{2}_1+A^{1}_1;
A^{2}_1(0, 1, 0, 0, 0)(2, 4, 4, 4, 2)3V_{2\psi}+12V_{\psi}+22V_{0}
22 \displaystyle C^{1}_3422A^{1}_1; A^{2}_1; 2A^{1}_1; A^{2}_1;
A^{1}_1(1, 0, 0, 0, 0)(2, 2, 2, 2, 1)V_{2\psi}+8V_{\psi}+36V_{0}
36 \displaystyle C^{1}_421A^{1}_1; A^{1}_1;


Length longest root ambient algebra squared/4= 1/2

Given a root subsystem P, and a root subsubsystem P_0, in (10.2) of Semisimple subalgebras of semisimple Lie algebras, E. Dynkin defines a numerical constant e(P, P_0) (which we call Dynkin epsilon).
In Theorem 10.3, Dynkin proves that if an sl(2) is an S-subalgebra in the root subalgebra generated by P, such that it has characteristic 2 for all simple roots of P lying in P_0, then e(P, P_0)= 0. It turns out by direct computation that, in the current case of C^{1}_5, e(P,P_0)= 0 implies that an S-sl(2) subalgebra of the root subalgebra generated by P with characteristic with 2's in the simple roots of P_0 always exists. Note that Theorem 10.3 is stated in one direction only.

h-characteristic: (2, 2, 2, 2, 2)
Length of the weight dual to h: 330
Simple basis ambient algebra w.r.t defining h: 5 vectors: (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: C^{1}_5
sl(2)-module decomposition of the ambient Lie algebra: V_{18\psi}+V_{14\psi}+V_{10\psi}+V_{6\psi}+V_{2\psi}
Below is one possible realization of the sl(2) subalgebra.
h = 25h_{5}+48h_{4}+42h_{3}+32h_{2}+18h_{1}
e = 25/17g_{5}+12/5g_{4}+21/5g_{3}+8g_{2}+9g_{1}
The polynomial system that corresponds to finding the h, e, f triple:
\begin{array}{l}2x_{1} x_{6} -18~\\2x_{2} x_{7} -32~\\2x_{3} x_{8} -42~\\2x_{4} x_{9} -48~\\x_{5} x_{10} -25~\\\end{array}


h-characteristic: (2, 2, 2, 0, 2)
Length of the weight dual to h: 170
Simple basis ambient algebra w.r.t defining h: 5 vectors: (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 2
Containing regular semisimple subalgebra number 1: C^{1}_5 Containing regular semisimple subalgebra number 2: C^{1}_4+A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: V_{14\psi}+V_{10\psi}+V_{8\psi}+2V_{6\psi}+2V_{2\psi}
Below is one possible realization of the sl(2) subalgebra.
h = 17h_{5}+32h_{4}+30h_{3}+24h_{2}+14h_{1}
e = 841/2074g_{13}+746/3111g_{9}+209/183g_{8}+40/3111g_{5}+100/183g_{3}+6g_{2}+7g_{1}
The polynomial system that corresponds to finding the h, e, f triple:
\begin{array}{l}x_{6} x_{14} +x_{4} x_{13} -x_{3} x_{12} ~\\x_{7} x_{13} +x_{6} x_{11} -x_{5} x_{10} ~\\2x_{1} x_{8} -14~\\2x_{2} x_{9} -24~\\2x_{5} x_{12} +2x_{3} x_{10} -30~\\2x_{6} x_{13} +2x_{4} x_{11} +2x_{3} x_{10} -32~\\x_{7} x_{14} +2x_{6} x_{13} +x_{4} x_{11} -17~\\\end{array}


h-characteristic: (2, 2, 2, 1, 0)
Length of the weight dual to h: 168
Simple basis ambient algebra w.r.t defining h: 5 vectors: (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: C^{1}_4
sl(2)-module decomposition of the ambient Lie algebra: V_{14\psi}+V_{10\psi}+2V_{7\psi}+V_{6\psi}+V_{2\psi}+3V_{0}
Below is one possible realization of the sl(2) subalgebra.
h = 16h_{5}+32h_{4}+30h_{3}+24h_{2}+14h_{1}
e = 8/5g_{13}+3g_{3}+6g_{2}+7g_{1}
The polynomial system that corresponds to finding the h, e, f triple:
\begin{array}{l}2x_{1} x_{5} -14~\\2x_{2} x_{6} -24~\\2x_{3} x_{7} -30~\\2x_{4} x_{8} -32~\\x_{4} x_{8} -16~\\\end{array}


h-characteristic: (2, 0, 2, 0, 2)
Length of the weight dual to h: 90
Simple basis ambient algebra w.r.t defining h: 5 vectors: (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 2
Containing regular semisimple subalgebra number 1: C^{1}_5 Containing regular semisimple subalgebra number 2: C^{1}_3+B^{1}_2
sl(2)-module decomposition of the ambient Lie algebra: V_{10\psi}+V_{8\psi}+3V_{6\psi}+V_{4\psi}+3V_{2\psi}
Below is one possible realization of the sl(2) subalgebra.
h = 13h_{5}+24h_{4}+22h_{3}+16h_{2}+10h_{1}
e = 738295/8225937g_{13}+30275/598823g_{11}+1498759/8225937g_{9}+497596/1796469g_{8}+301843/1197646g_{7}+42425/31517g_{6} \\ -117884/8225937g_{5}-13030/1796469g_{3}+11516/31517g_{1}
The polynomial system that corresponds to finding the h, e, f triple:
\begin{array}{l}x_{6} x_{17} +x_{2} x_{14} -x_{1} x_{13} ~\\x_{7} x_{18} -x_{5} x_{17} +x_{3} x_{16} -x_{2} x_{15} ~\\x_{8} x_{15} +x_{5} x_{11} -x_{4} x_{10} ~\\x_{9} x_{16} -x_{8} x_{14} +x_{7} x_{12} -x_{6} x_{11} ~\\2x_{4} x_{13} +2x_{1} x_{10} -10~\\2x_{6} x_{15} +2x_{2} x_{11} +2x_{1} x_{10} -16~\\2x_{8} x_{17} +2x_{6} x_{15} +2x_{5} x_{14} +2x_{2} x_{11} -22~\\2x_{7} x_{16} +2x_{5} x_{14} +2x_{3} x_{12} +2x_{2} x_{11} -24~\\x_{9} x_{18} +2x_{7} x_{16} +x_{3} x_{12} -13~\\\end{array}


h-characteristic: (0, 2, 0, 2, 0)
Length of the weight dual to h: 80
Simple basis ambient algebra w.r.t defining h: 5 vectors: (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: A^{2}_4
sl(2)-module decomposition of the ambient Lie algebra: 3V_{8\psi}+V_{6\psi}+3V_{4\psi}+V_{2\psi}+3V_{0}
Below is one possible realization of the sl(2) subalgebra.
h = 12h_{5}+24h_{4}+20h_{3}+16h_{2}+8h_{1}
e = 4g_{10}+3g_{9}+6/5g_{8}+2/5g_{2}
The polynomial system that corresponds to finding the h, e, f triple:
\begin{array}{l}2x_{1} x_{5} -8~\\2x_{4} x_{8} +2x_{1} x_{5} -16~\\2x_{3} x_{7} +2x_{1} x_{5} -20~\\2x_{3} x_{7} +2x_{2} x_{6} -24~\\2x_{2} x_{6} -12~\\\end{array}


h-characteristic: (2, 2, 0, 0, 2)
Length of the weight dual to h: 74
Simple basis ambient algebra w.r.t defining h: 5 vectors: (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 3
Containing regular semisimple subalgebra number 1: C^{1}_4+A^{1}_1 Containing regular semisimple subalgebra number 2: C^{1}_3+2A^{1}_1 Containing regular semisimple subalgebra number 3: C^{1}_3+A^{2}_1
sl(2)-module decomposition of the ambient Lie algebra: V_{10\psi}+3V_{6\psi}+2V_{4\psi}+4V_{2\psi}+V_{0}
Below is one possible realization of the sl(2) subalgebra.
h = 11h_{5}+20h_{4}+18h_{3}+16h_{2}+10h_{1}
e = 1/10g_{19}+1010835/1650251g_{13}+4128/3361g_{11}+220938/1650251g_{9}+1096/3361g_{7}-1093/1650251g_{5} \\ +5g_{1}
The polynomial system that corresponds to finding the h, e, f triple:
\begin{array}{l}x_{6} x_{14} +x_{3} x_{13} -x_{2} x_{12} ~\\x_{7} x_{13} +x_{6} x_{10} -x_{5} x_{9} ~\\2x_{1} x_{8} -10~\\2x_{5} x_{12} +2x_{2} x_{9} -16~\\2x_{5} x_{12} +2x_{4} x_{11} +2x_{2} x_{9} -18~\\2x_{6} x_{13} +2x_{4} x_{11} +2x_{3} x_{10} +2x_{2} x_{9} -20~\\x_{7} x_{14} +2x_{6} x_{13} +x_{4} x_{11} +x_{3} x_{10} -11~\\\end{array}


h-characteristic: (2, 2, 0, 1, 0)
Length of the weight dual to h: 72
Simple basis ambient algebra w.r.t defining h: 5 vectors: (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 2
Containing regular semisimple subalgebra number 1: C^{1}_4 Containing regular semisimple subalgebra number 2: C^{1}_3+A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: V_{10\psi}+2V_{6\psi}+2V_{5\psi}+V_{4\psi}+2V_{2\psi}+2V_{\psi}+3V_{0}
Below is one possible realization of the sl(2) subalgebra.
h = 10h_{5}+20h_{4}+18h_{3}+16h_{2}+10h_{1}
e = 2606/5671g_{19}+1313/5671g_{16}-37/5671g_{13}+148/107g_{7}+56/107g_{2}+5g_{1}
The polynomial system that corresponds to finding the h, e, f triple:
\begin{array}{l}x_{5} x_{12} +x_{3} x_{11} -x_{2} x_{10} ~\\x_{6} x_{11} +x_{5} x_{9} -x_{4} x_{8} ~\\2x_{1} x_{7} -10~\\2x_{4} x_{10} +2x_{2} x_{8} -16~\\2x_{5} x_{11} +2x_{3} x_{9} +2x_{2} x_{8} -18~\\2x_{6} x_{12} +4x_{5} x_{11} +2x_{3} x_{9} -20~\\x_{6} x_{12} +2x_{5} x_{11} +x_{3} x_{9} -10~\\\end{array}


h-characteristic: (2, 2, 1, 0, 0)
Length of the weight dual to h: 70
Simple basis ambient algebra w.r.t defining h: 5 vectors: (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: C^{1}_3
sl(2)-module decomposition of the ambient Lie algebra: V_{10\psi}+V_{6\psi}+4V_{5\psi}+V_{2\psi}+10V_{0}
Below is one possible realization of the sl(2) subalgebra.
h = 9h_{5}+18h_{4}+18h_{3}+16h_{2}+10h_{1}
e = 9/5g_{19}+4g_{2}+5g_{1}
The polynomial system that corresponds to finding the h, e, f triple:
\begin{array}{l}2x_{1} x_{4} -10~\\2x_{2} x_{5} -16~\\2x_{3} x_{6} -18~\\2x_{3} x_{6} -18~\\x_{3} x_{6} -9~\\\end{array}


h-characteristic: (0, 2, 0, 0, 2)
Length of the weight dual to h: 42
Simple basis ambient algebra w.r.t defining h: 5 vectors: (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 3
Containing regular semisimple subalgebra number 1: C^{1}_3+B^{1}_2 Containing regular semisimple subalgebra number 2: 2B^{1}_2+A^{1}_1 Containing regular semisimple subalgebra number 3: A^{2}_3+A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: 3V_{6\psi}+3V_{4\psi}+6V_{2\psi}+V_{0}
Below is one possible realization of the sl(2) subalgebra.
h = 9h_{5}+16h_{4}+14h_{3}+12h_{2}+6h_{1}
e = 4/5g_{19}+1437/1499g_{14}+466471/902398g_{13}+180/1499g_{10}+34838/451199g_{9}-596/451199g_{5}+3/10g_{2}
The polynomial system that corresponds to finding the h, e, f triple:
\begin{array}{l}x_{6} x_{14} +x_{2} x_{13} -x_{1} x_{12} ~\\x_{7} x_{13} +x_{6} x_{9} -x_{5} x_{8} ~\\2x_{5} x_{12} +2x_{1} x_{8} -6~\\2x_{5} x_{12} +2x_{4} x_{11} +2x_{1} x_{8} -12~\\2x_{5} x_{12} +2x_{3} x_{10} +2x_{1} x_{8} -14~\\2x_{6} x_{13} +2x_{3} x_{10} +2x_{2} x_{9} +2x_{1} x_{8} -16~\\x_{7} x_{14} +2x_{6} x_{13} +x_{3} x_{10} +x_{2} x_{9} -9~\\\end{array}


h-characteristic: (0, 2, 0, 1, 0)
Length of the weight dual to h: 40
Simple basis ambient algebra w.r.t defining h: 5 vectors: (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 2
Containing regular semisimple subalgebra number 1: 2B^{1}_2 Containing regular semisimple subalgebra number 2: A^{2}_3
sl(2)-module decomposition of the ambient Lie algebra: 3V_{6\psi}+V_{4\psi}+4V_{3\psi}+3V_{2\psi}+4V_{0}
Below is one possible realization of the sl(2) subalgebra.
h = 8h_{5}+16h_{4}+14h_{3}+12h_{2}+6h_{1}
e = 4g_{19}+4/5g_{13}+3/10g_{7}+3/2g_{6}
The polynomial system that corresponds to finding the h, e, f triple:
\begin{array}{l}2x_{2} x_{6} -6~\\2x_{4} x_{8} +2x_{2} x_{6} -12~\\2x_{4} x_{8} +2x_{1} x_{5} -14~\\2x_{3} x_{7} +2x_{1} x_{5} -16~\\x_{3} x_{7} +x_{1} x_{5} -8~\\\end{array}


h-characteristic: (1, 0, 1, 1, 0)
Length of the weight dual to h: 36
Simple basis ambient algebra w.r.t defining h: 5 vectors: (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: A^{2}_2+B^{1}_2
sl(2)-module decomposition of the ambient Lie algebra: V_{6\psi}+2V_{5\psi}+3V_{4\psi}+2V_{3\psi}+2V_{2\psi}+2V_{\psi}+3V_{0}
Below is one possible realization of the sl(2) subalgebra.
h = 8h_{5}+16h_{4}+14h_{3}+10h_{2}+6h_{1}
e = 2g_{15}+4/5g_{13}+3/10g_{10}+g_{8}
The polynomial system that corresponds to finding the h, e, f triple:
\begin{array}{l}2x_{4} x_{8} -6~\\2x_{4} x_{8} +2x_{1} x_{5} -10~\\2x_{4} x_{8} +2x_{2} x_{6} +2x_{1} x_{5} -14~\\2x_{3} x_{7} +2x_{2} x_{6} +2x_{1} x_{5} -16~\\x_{3} x_{7} +2x_{1} x_{5} -8~\\\end{array}


h-characteristic: (2, 0, 0, 0, 2)
Length of the weight dual to h: 26
Simple basis ambient algebra w.r.t defining h: 5 vectors: (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 4
Containing regular semisimple subalgebra number 1: C^{1}_3+2A^{1}_1 Containing regular semisimple subalgebra number 2: B^{1}_2+3A^{1}_1 Containing regular semisimple subalgebra number 3: C^{1}_3+A^{2}_1 Containing regular semisimple subalgebra number 4: B^{1}_2+A^{2}_1+A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: V_{6\psi}+3V_{4\psi}+10V_{2\psi}+3V_{0}
Below is one possible realization of the sl(2) subalgebra.
h = 7h_{5}+12h_{4}+10h_{3}+8h_{2}+6h_{1}
e = 1/5g_{23}+1/10g_{19}+1437/1499g_{14}+466471/902398g_{13}+180/1499g_{10}+34838/451199g_{9}-596/451199g_{5}
The polynomial system that corresponds to finding the h, e, f triple:
\begin{array}{l}x_{6} x_{14} +x_{2} x_{13} -x_{1} x_{12} ~\\x_{7} x_{13} +x_{6} x_{9} -x_{5} x_{8} ~\\2x_{5} x_{12} +2x_{1} x_{8} -6~\\2x_{5} x_{12} +2x_{3} x_{10} +2x_{1} x_{8} -8~\\2x_{5} x_{12} +2x_{4} x_{11} +2x_{3} x_{10} +2x_{1} x_{8} -10~\\2x_{6} x_{13} +2x_{4} x_{11} +2x_{3} x_{10} +2x_{2} x_{9} +2x_{1} x_{8} -12~\\x_{7} x_{14} +2x_{6} x_{13} +x_{4} x_{11} +x_{3} x_{10} +x_{2} x_{9} -7~\\\end{array}


h-characteristic: (2, 0, 0, 1, 0)
Length of the weight dual to h: 24
Simple basis ambient algebra w.r.t defining h: 5 vectors: (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 3
Containing regular semisimple subalgebra number 1: C^{1}_3+A^{1}_1 Containing regular semisimple subalgebra number 2: B^{1}_2+2A^{1}_1 Containing regular semisimple subalgebra number 3: B^{1}_2+A^{2}_1
sl(2)-module decomposition of the ambient Lie algebra: V_{6\psi}+2V_{4\psi}+2V_{3\psi}+6V_{2\psi}+4V_{\psi}+4V_{0}
Below is one possible realization of the sl(2) subalgebra.
h = 6h_{5}+12h_{4}+10h_{3}+8h_{2}+6h_{1}
e = 1/5g_{23}+28192/67071g_{19}+8366/67071g_{16}-421/134142g_{13}+294/283g_{10}+111/566g_{6}
The polynomial system that corresponds to finding the h, e, f triple:
\begin{array}{l}x_{5} x_{12} +x_{2} x_{11} -x_{1} x_{10} ~\\x_{6} x_{11} +x_{5} x_{8} -x_{4} x_{7} ~\\2x_{4} x_{10} +2x_{1} x_{7} -6~\\2x_{4} x_{10} +2x_{3} x_{9} +2x_{1} x_{7} -8~\\2x_{5} x_{11} +2x_{3} x_{9} +2x_{2} x_{8} +2x_{1} x_{7} -10~\\2x_{6} x_{12} +4x_{5} x_{11} +2x_{3} x_{9} +2x_{2} x_{8} -12~\\x_{6} x_{12} +2x_{5} x_{11} +x_{3} x_{9} +x_{2} x_{8} -6~\\\end{array}


h-characteristic: (2, 0, 1, 0, 0)
Length of the weight dual to h: 22
Simple basis ambient algebra w.r.t defining h: 5 vectors: (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 2
Containing regular semisimple subalgebra number 1: C^{1}_3 Containing regular semisimple subalgebra number 2: B^{1}_2+A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: V_{6\psi}+V_{4\psi}+4V_{3\psi}+3V_{2\psi}+4V_{\psi}+10V_{0}
Below is one possible realization of the sl(2) subalgebra.
h = 5h_{5}+10h_{4}+10h_{3}+8h_{2}+6h_{1}
e = 2111/11022g_{23}+1330/5511g_{21}-68/5511g_{19}+201/167g_{6}+60/167g_{1}
The polynomial system that corresponds to finding the h, e, f triple:
\begin{array}{l}x_{4} x_{10} +x_{2} x_{9} -x_{1} x_{8} ~\\x_{5} x_{9} +x_{4} x_{7} -x_{3} x_{6} ~\\2x_{3} x_{8} +2x_{1} x_{6} -6~\\2x_{4} x_{9} +2x_{2} x_{7} +2x_{1} x_{6} -8~\\2x_{5} x_{10} +4x_{4} x_{9} +2x_{2} x_{7} -10~\\2x_{5} x_{10} +4x_{4} x_{9} +2x_{2} x_{7} -10~\\x_{5} x_{10} +2x_{4} x_{9} +x_{2} x_{7} -5~\\\end{array}


h-characteristic: (2, 1, 0, 0, 0)
Length of the weight dual to h: 20
Simple basis ambient algebra w.r.t defining h: 5 vectors: (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: B^{1}_2
sl(2)-module decomposition of the ambient Lie algebra: V_{6\psi}+6V_{3\psi}+V_{2\psi}+21V_{0}
Below is one possible realization of the sl(2) subalgebra.
h = 4h_{5}+8h_{4}+8h_{3}+8h_{2}+6h_{1}
e = 4g_{23}+3/2g_{1}
The polynomial system that corresponds to finding the h, e, f triple:
\begin{array}{l}2x_{2} x_{4} -6~\\2x_{1} x_{3} -8~\\2x_{1} x_{3} -8~\\2x_{1} x_{3} -8~\\x_{1} x_{3} -4~\\\end{array}


h-characteristic: (0, 1, 0, 1, 0)
Length of the weight dual to h: 20
Simple basis ambient algebra w.r.t defining h: 5 vectors: (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 2
Containing regular semisimple subalgebra number 1: A^{2}_2+2A^{1}_1 Containing regular semisimple subalgebra number 2: A^{2}_2+A^{2}_1
sl(2)-module decomposition of the ambient Lie algebra: 3V_{4\psi}+4V_{3\psi}+4V_{2\psi}+4V_{\psi}+4V_{0}
Below is one possible realization of the sl(2) subalgebra.
h = 6h_{5}+12h_{4}+10h_{3}+8h_{2}+4h_{1}
e = 1/5g_{19}+2g_{17}+1/10g_{13}+g_{11}
The polynomial system that corresponds to finding the h, e, f triple:
\begin{array}{l}2x_{1} x_{5} -4~\\2x_{2} x_{6} +2x_{1} x_{5} -8~\\2x_{3} x_{7} +2x_{2} x_{6} +2x_{1} x_{5} -10~\\2x_{4} x_{8} +2x_{3} x_{7} +2x_{2} x_{6} +2x_{1} x_{5} -12~\\x_{4} x_{8} +x_{3} x_{7} +2x_{1} x_{5} -6~\\\end{array}


h-characteristic: (0, 1, 1, 0, 0)
Length of the weight dual to h: 18
Simple basis ambient algebra w.r.t defining h: 5 vectors: (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: A^{2}_2+A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: 3V_{4\psi}+2V_{3\psi}+6V_{2\psi}+4V_{\psi}+6V_{0}
Below is one possible realization of the sl(2) subalgebra.
h = 5h_{5}+10h_{4}+10h_{3}+8h_{2}+4h_{1}
e = 2g_{20}+1/5g_{19}+g_{7}
The polynomial system that corresponds to finding the h, e, f triple:
\begin{array}{l}2x_{1} x_{4} -4~\\2x_{2} x_{5} +2x_{1} x_{4} -8~\\2x_{3} x_{6} +2x_{2} x_{5} +2x_{1} x_{4} -10~\\2x_{3} x_{6} +4x_{1} x_{4} -10~\\x_{3} x_{6} +2x_{1} x_{4} -5~\\\end{array}


h-characteristic: (0, 2, 0, 0, 0)
Length of the weight dual to h: 16
Simple basis ambient algebra w.r.t defining h: 5 vectors: (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: A^{2}_2
sl(2)-module decomposition of the ambient Lie algebra: 3V_{4\psi}+9V_{2\psi}+13V_{0}
Below is one possible realization of the sl(2) subalgebra.
h = 4h_{5}+8h_{4}+8h_{3}+8h_{2}+4h_{1}
e = 2g_{22}+g_{2}
The polynomial system that corresponds to finding the h, e, f triple:
\begin{array}{l}2x_{1} x_{3} -4~\\2x_{2} x_{4} +2x_{1} x_{3} -8~\\4x_{1} x_{3} -8~\\4x_{1} x_{3} -8~\\2x_{1} x_{3} -4~\\\end{array}


h-characteristic: (0, 0, 0, 0, 2)
Length of the weight dual to h: 10
Simple basis ambient algebra w.r.t defining h: 5 vectors: (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 3
Containing regular semisimple subalgebra number 1: 5A^{1}_1 Containing regular semisimple subalgebra number 2: A^{2}_1+3A^{1}_1 Containing regular semisimple subalgebra number 3: 2A^{2}_1+A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: 15V_{2\psi}+10V_{0}
Below is one possible realization of the sl(2) subalgebra.
h = 5h_{5}+8h_{4}+6h_{3}+4h_{2}+2h_{1}
e = g_{25}+1/2g_{23}+1/5g_{19}+1/10g_{13}+1/17g_{5}
The polynomial system that corresponds to finding the h, e, f triple:
\begin{array}{l}2x_{1} x_{6} -2~\\2x_{2} x_{7} +2x_{1} x_{6} -4~\\2x_{3} x_{8} +2x_{2} x_{7} +2x_{1} x_{6} -6~\\2x_{4} x_{9} +2x_{3} x_{8} +2x_{2} x_{7} +2x_{1} x_{6} -8~\\x_{5} x_{10} +x_{4} x_{9} +x_{3} x_{8} +x_{2} x_{7} +x_{1} x_{6} -5~\\\end{array}


h-characteristic: (0, 0, 0, 1, 0)
Length of the weight dual to h: 8
Simple basis ambient algebra w.r.t defining h: 5 vectors: (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 3
Containing regular semisimple subalgebra number 1: 4A^{1}_1 Containing regular semisimple subalgebra number 2: A^{2}_1+2A^{1}_1 Containing regular semisimple subalgebra number 3: 2A^{2}_1
sl(2)-module decomposition of the ambient Lie algebra: 10V_{2\psi}+8V_{\psi}+9V_{0}
Below is one possible realization of the sl(2) subalgebra.
h = 4h_{5}+8h_{4}+6h_{3}+4h_{2}+2h_{1}
e = g_{25}+1/2g_{23}+1/5g_{19}+1/10g_{13}
The polynomial system that corresponds to finding the h, e, f triple:
\begin{array}{l}2x_{1} x_{5} -2~\\2x_{2} x_{6} +2x_{1} x_{5} -4~\\2x_{3} x_{7} +2x_{2} x_{6} +2x_{1} x_{5} -6~\\2x_{4} x_{8} +2x_{3} x_{7} +2x_{2} x_{6} +2x_{1} x_{5} -8~\\x_{4} x_{8} +x_{3} x_{7} +x_{2} x_{6} +x_{1} x_{5} -4~\\\end{array}


h-characteristic: (0, 0, 1, 0, 0)
Length of the weight dual to h: 6
Simple basis ambient algebra w.r.t defining h: 5 vectors: (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 2
Containing regular semisimple subalgebra number 1: 3A^{1}_1 Containing regular semisimple subalgebra number 2: A^{2}_1+A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: 6V_{2\psi}+12V_{\psi}+13V_{0}
Below is one possible realization of the sl(2) subalgebra.
h = 3h_{5}+6h_{4}+6h_{3}+4h_{2}+2h_{1}
e = g_{25}+1/2g_{23}+1/5g_{19}
The polynomial system that corresponds to finding the h, e, f triple:
\begin{array}{l}2x_{1} x_{4} -2~\\2x_{2} x_{5} +2x_{1} x_{4} -4~\\2x_{3} x_{6} +2x_{2} x_{5} +2x_{1} x_{4} -6~\\2x_{3} x_{6} +2x_{2} x_{5} +2x_{1} x_{4} -6~\\x_{3} x_{6} +x_{2} x_{5} +x_{1} x_{4} -3~\\\end{array}


h-characteristic: (0, 1, 0, 0, 0)
Length of the weight dual to h: 4
Simple basis ambient algebra w.r.t defining h: 5 vectors: (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 2
Containing regular semisimple subalgebra number 1: 2A^{1}_1 Containing regular semisimple subalgebra number 2: A^{2}_1
sl(2)-module decomposition of the ambient Lie algebra: 3V_{2\psi}+12V_{\psi}+22V_{0}
Below is one possible realization of the sl(2) subalgebra.
h = 2h_{5}+4h_{4}+4h_{3}+4h_{2}+2h_{1}
e = g_{25}+1/2g_{23}
The polynomial system that corresponds to finding the h, e, f triple:
\begin{array}{l}2x_{1} x_{3} -2~\\2x_{2} x_{4} +2x_{1} x_{3} -4~\\2x_{2} x_{4} +2x_{1} x_{3} -4~\\2x_{2} x_{4} +2x_{1} x_{3} -4~\\x_{2} x_{4} +x_{1} x_{3} -2~\\\end{array}


h-characteristic: (1, 0, 0, 0, 0)
Length of the weight dual to h: 2
Simple basis ambient algebra w.r.t defining h: 5 vectors: (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: V_{2\psi}+8V_{\psi}+36V_{0}
Below is one possible realization of the sl(2) subalgebra.
h = h_{5}+2h_{4}+2h_{3}+2h_{2}+2h_{1}
e = g_{25}
The polynomial system that corresponds to finding the h, e, f triple:
\begin{array}{l}2x_{1} x_{2} -2~\\2x_{1} x_{2} -2~\\2x_{1} x_{2} -2~\\2x_{1} x_{2} -2~\\x_{1} x_{2} -1~\\\end{array}


Calculator input for loading subalgebras directly without recomputation. Subalgebras found so far: 119
Orbit sizes: A^165_1: n/a; A^85_1: n/a; A^84_1: n/a; A^45_1: 960; A^40_1: n/a; A^37_1: n/a; A^36_1: n/a; A^35_1: 480; A^21_1: n/a; A^20_1: 480; A^18_1: 960; A^13_1: n/a; A^12_1: n/a; A^11_1: 240; A^10_1: 80; A^10_1: 480; A^9_1: 240; A^8_1: 40; A^5_1: 32; A^4_1: 80; A^3_1: 80; A^2_1: 40; A^1_1: 10;
Current subalgebra chain length: 0


SetOutputFile("subalgebras_C^{1}_5");
LoadSemisimpleSubalgebras {}(AmbientDynkinType=C^{1}{}\left(5\right);CurrentChain=\left(\right);NumExploredTypes=\left(\right);NumExploredHs=\left(\right);Subalgebras=\left((DynkinType=A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 2 & 2 & 2 & 1 \end{pmatrix};generators=\left(g{}\left(-25\right), g{}\left(25\right)\right)), (DynkinType=A^{2}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 4 & 4 & 4 & 2 \end{pmatrix};generators=\left(g{}\left(-24\right), g{}\left(24\right)\right)), (DynkinType=A^{3}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 4 & 6 & 6 & 3 \end{pmatrix};generators=\left(g{}\left(-19\right)+g{}\left(-24\right), g{}\left(19\right)+g{}\left(24\right)\right)), (DynkinType=A^{4}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 4 & 6 & 8 & 4 \end{pmatrix};generators=\left(g{}\left(-24\right)+g{}\left(-16\right), g{}\left(24\right)+g{}\left(16\right)\right)), (DynkinType=A^{5}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 4 & 6 & 8 & 5 \end{pmatrix};generators=\left(g{}\left(-5\right)+g{}\left(-24\right)+g{}\left(-16\right), g{}\left(5\right)+g{}\left(24\right)+g{}\left(16\right)\right)), (DynkinType=A^{8}{}\left(1\right);ElementsCartan=\begin{pmatrix}4 & 8 & 8 & 8 & 4 \end{pmatrix};generators=\left(g{}\left(-17\right)+g{}\left(-11\right), 2 g{}\left(17\right)+2 g{}\left(11\right)\right)), (DynkinType=A^{9}{}\left(1\right);ElementsCartan=\begin{pmatrix}4 & 8 & 10 & 10 & 5 \end{pmatrix};generators=\left(g{}\left(-19\right)+g{}\left(-17\right)+g{}\left(-11\right), g{}\left(19\right)+2 g{}\left(17\right)+2 g{}\left(11\right)\right)), (DynkinType=A^{10}{}\left(1\right);ElementsCartan=\begin{pmatrix}4 & 8 & 10 & 12 & 6 \end{pmatrix};generators=\left(g{}\left(-11\right)+g{}\left(-17\right)+g{}\left(-16\right), 2 g{}\left(11\right)+2 g{}\left(17\right)+g{}\left(16\right)\right)), (DynkinType=A^{10}{}\left(1\right);ElementsCartan=\begin{pmatrix}6 & 8 & 8 & 8 & 4 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-23\right), 3 g{}\left(1\right)+4 g{}\left(23\right)\right)), (DynkinType=A^{11}{}\left(1\right);ElementsCartan=\begin{pmatrix}6 & 8 & 10 & 10 & 5 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-23\right)+g{}\left(-19\right), 3 g{}\left(1\right)+4 g{}\left(23\right)+g{}\left(19\right)\right)), (DynkinType=A^{12}{}\left(1\right);ElementsCartan=\begin{pmatrix}6 & 8 & 10 & 12 & 6 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-23\right)+g{}\left(-16\right), 3 g{}\left(1\right)+4 g{}\left(23\right)+g{}\left(16\right)\right)), (DynkinType=A^{13}{}\left(1\right);ElementsCartan=\begin{pmatrix}6 & 8 & 10 & 12 & 7 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-23\right)+g{}\left(-19\right)+g{}\left(-9\right), 3 g{}\left(1\right)+4 g{}\left(23\right)+g{}\left(19\right)+g{}\left(9\right)\right)), (DynkinType=A^{18}{}\left(1\right);ElementsCartan=\begin{pmatrix}6 & 10 & 14 & 16 & 8 \end{pmatrix};generators=\left(g{}\left(-8\right)+g{}\left(-10\right)+g{}\left(-15\right)+g{}\left(-13\right), 2 g{}\left(8\right)+3 g{}\left(10\right)+2 g{}\left(15\right)+4 g{}\left(13\right)\right)), (DynkinType=A^{20}{}\left(1\right);ElementsCartan=\begin{pmatrix}6 & 12 & 14 & 16 & 8 \end{pmatrix};generators=\left(g{}\left(-2\right)+g{}\left(-16\right)+g{}\left(-10\right), 3 g{}\left(2\right)+4 g{}\left(16\right)+3 g{}\left(10\right)\right)), (DynkinType=A^{21}{}\left(1\right);ElementsCartan=\begin{pmatrix}6 & 12 & 14 & 16 & 9 \end{pmatrix};generators=\left(g{}\left(-2\right)+g{}\left(-5\right)+g{}\left(-16\right)+g{}\left(-10\right), 3 g{}\left(2\right)+g{}\left(5\right)+4 g{}\left(16\right)+3 g{}\left(10\right)\right)), (DynkinType=A^{35}{}\left(1\right);ElementsCartan=\begin{pmatrix}10 & 16 & 18 & 18 & 9 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-2\right)+g{}\left(-19\right), 5 g{}\left(1\right)+8 g{}\left(2\right)+9 g{}\left(19\right)\right)), (DynkinType=A^{36}{}\left(1\right);ElementsCartan=\begin{pmatrix}10 & 16 & 18 & 20 & 10 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-2\right)+g{}\left(-19\right)+g{}\left(-13\right), 5 g{}\left(1\right)+8 g{}\left(2\right)+9 g{}\left(19\right)+g{}\left(13\right)\right)), (DynkinType=A^{37}{}\left(1\right);ElementsCartan=\begin{pmatrix}10 & 16 & 18 & 20 & 11 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-2\right)+g{}\left(-19\right)+g{}\left(-9\right), 5 g{}\left(1\right)+8 g{}\left(2\right)+9 g{}\left(19\right)+g{}\left(9\right)\right)), (DynkinType=A^{40}{}\left(1\right);ElementsCartan=\begin{pmatrix}8 & 16 & 20 & 24 & 12 \end{pmatrix};generators=\left(g{}\left(-2\right)+g{}\left(-4\right)+g{}\left(-12\right)+g{}\left(-10\right), 4 g{}\left(2\right)+6 g{}\left(4\right)+6 g{}\left(12\right)+4 g{}\left(10\right)\right)), (DynkinType=A^{45}{}\left(1\right);ElementsCartan=\begin{pmatrix}10 & 16 & 22 & 24 & 13 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-3\right)+g{}\left(-11\right)+g{}\left(-9\right)+\frac{5}{2} g{}\left(-7\right), 5 g{}\left(1\right)+3 g{}\left(3\right)+g{}\left(5\right)+g{}\left(6\right)+g{}\left(7\right)-\frac{15}{2} g{}\left(8\right)+\frac{13}{2} g{}\left(9\right)+\frac{11}{2} g{}\left(11\right)+\frac{25}{4} g{}\left(13\right)\right)), (DynkinType=A^{84}{}\left(1\right);ElementsCartan=\begin{pmatrix}14 & 24 & 30 & 32 & 16 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-2\right)+g{}\left(-3\right)+g{}\left(-13\right), 7 g{}\left(1\right)+12 g{}\left(2\right)+15 g{}\left(3\right)+16 g{}\left(13\right)\right)), (DynkinType=A^{85}{}\left(1\right);ElementsCartan=\begin{pmatrix}14 & 24 & 30 & 32 & 17 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-2\right)+g{}\left(-3\right)+g{}\left(-5\right)+g{}\left(-13\right), 7 g{}\left(1\right)+12 g{}\left(2\right)+15 g{}\left(3\right)+g{}\left(5\right)+16 g{}\left(13\right)\right)), (DynkinType=A^{165}{}\left(1\right);ElementsCartan=\begin{pmatrix}18 & 32 & 42 & 48 & 25 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-2\right)+g{}\left(-3\right)+g{}\left(-4\right)+g{}\left(-5\right), 9 g{}\left(1\right)+16 g{}\left(2\right)+21 g{}\left(3\right)+24 g{}\left(4\right)+25 g{}\left(5\right)\right)), (DynkinType=2 A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 2 & 2 & 2 & 1\\ 0 & 2 & 2 & 2 & 1 \end{pmatrix};generators=\left(g{}\left(-25\right), g{}\left(25\right), g{}\left(-23\right), g{}\left(23\right)\right)), (DynkinType=A^{2}{}\left(1\right)+A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 4 & 4 & 4 & 2\\ 0 & 0 & 2 & 2 & 1 \end{pmatrix};generators=\left(g{}\left(-24\right), g{}\left(24\right), g{}\left(-19\right), g{}\left(19\right)\right)), (DynkinType=2 A^{2}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 4 & 4 & 4 & 2\\ 0 & 0 & 2 & 4 & 2 \end{pmatrix};generators=\left(g{}\left(-24\right), g{}\left(24\right), g{}\left(-16\right), g{}\left(16\right)\right)), (DynkinType=A^{3}{}\left(1\right)+A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 4 & 6 & 6 & 3\\ 0 & 0 & 0 & 2 & 1 \end{pmatrix};generators=\left(g{}\left(-19\right)+g{}\left(-24\right), g{}\left(19\right)+g{}\left(24\right), g{}\left(-13\right), g{}\left(13\right)\right)), (DynkinType=A^{3}{}\left(1\right)+A^{2}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 4 & 6 & 6 & 3\\ 0 & 0 & 0 & 2 & 2 \end{pmatrix};generators=\left(g{}\left(-19\right)+g{}\left(-24\right), g{}\left(19\right)+g{}\left(24\right), g{}\left(-9\right), g{}\left(9\right)\right)), (DynkinType=A^{4}{}\left(1\right)+A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 4 & 6 & 8 & 4\\ 0 & 0 & 0 & 0 & 1 \end{pmatrix};generators=\left(g{}\left(-24\right)+g{}\left(-16\right), g{}\left(24\right)+g{}\left(16\right), g{}\left(-5\right), g{}\left(5\right)\right)), (DynkinType=2 A^{4}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 4 & 6 & 8 & 4\\ 2 & 4 & 2 & 0 & 0 \end{pmatrix};generators=\left(g{}\left(-21\right)+g{}\left(-20\right), g{}\left(21\right)+g{}\left(20\right), g{}\left(-7\right)-g{}\left(-6\right), g{}\left(7\right)-g{}\left(6\right)\right)), (DynkinType=A^{5}{}\left(1\right)+A^{4}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 4 & 6 & 8 & 5\\ 2 & 4 & 4 & 2 & 0 \end{pmatrix};generators=\left(g{}\left(-19\right)+g{}\left(-17\right)+g{}\left(-18\right), g{}\left(19\right)+g{}\left(17\right)+g{}\left(18\right), g{}\left(-11\right)-g{}\left(-10\right), g{}\left(11\right)-g{}\left(10\right)\right)), (DynkinType=A^{8}{}\left(1\right)+A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}4 & 8 & 8 & 8 & 4\\ 0 & 0 & 2 & 2 & 1 \end{pmatrix};generators=\left(g{}\left(-17\right)+g{}\left(-11\right), 2 g{}\left(17\right)+2 g{}\left(11\right), g{}\left(-19\right), g{}\left(19\right)\right)), (DynkinType=A^{8}{}\left(1\right)+A^{2}{}\left(1\right);ElementsCartan=\begin{pmatrix}4 & 8 & 8 & 8 & 4\\ 0 & 0 & 2 & 4 & 2 \end{pmatrix};generators=\left(g{}\left(-17\right)+g{}\left(-11\right), 2 g{}\left(17\right)+2 g{}\left(11\right), g{}\left(-16\right), g{}\left(16\right)\right)), (DynkinType=A^{8}{}\left(1\right)+A^{3}{}\left(1\right);ElementsCartan=\begin{pmatrix}4 & 8 & 8 & 8 & 4\\ 2 & 0 & 2 & 2 & 1 \end{pmatrix};generators=\left(g{}\left(-6\right)+g{}\left(-21\right), 2 g{}\left(6\right)+2 g{}\left(21\right), g{}\left(-1\right)+g{}\left(-19\right), g{}\left(1\right)+g{}\left(19\right)\right)), (DynkinType=A^{8}{}\left(1\right)+A^{4}{}\left(1\right);ElementsCartan=\begin{pmatrix}4 & 8 & 8 & 8 & 4\\ 2 & 0 & 2 & 4 & 2 \end{pmatrix};generators=\left(g{}\left(-18\right)+g{}\left(-10\right), 2 g{}\left(18\right)+2 g{}\left(10\right), g{}\left(-1\right)+g{}\left(-13\right)+g{}\left(-19\right), g{}\left(1\right)+g{}\left(13\right)+g{}\left(19\right)\right)), (DynkinType=A^{8}{}\left(1\right)+A^{5}{}\left(1\right);ElementsCartan=\begin{pmatrix}4 & 8 & 8 & 8 & 4\\ 2 & 0 & 2 & 4 & 3 \end{pmatrix};generators=\left(g{}\left(-15\right)+g{}\left(-14\right), 2 g{}\left(15\right)+2 g{}\left(14\right), g{}\left(-1\right)+g{}\left(-5\right)+g{}\left(-16\right), g{}\left(1\right)+g{}\left(5\right)+g{}\left(16\right)\right)), (DynkinType=A^{9}{}\left(1\right)+A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}4 & 8 & 10 & 10 & 5\\ 0 & 0 & 0 & 2 & 1 \end{pmatrix};generators=\left(g{}\left(-19\right)+g{}\left(-17\right)+g{}\left(-11\right), g{}\left(19\right)+2 g{}\left(17\right)+2 g{}\left(11\right), g{}\left(-13\right), g{}\left(13\right)\right)), (DynkinType=A^{9}{}\left(1\right)+A^{3}{}\left(1\right);ElementsCartan=\begin{pmatrix}4 & 8 & 10 & 10 & 5\\ 2 & 0 & 0 & 2 & 1 \end{pmatrix};generators=\left(g{}\left(-10\right)+g{}\left(-18\right)+g{}\left(-19\right), 2 g{}\left(10\right)+2 g{}\left(18\right)+g{}\left(19\right), g{}\left(-1\right)+g{}\left(-13\right), g{}\left(1\right)+g{}\left(13\right)\right)), (DynkinType=A^{9}{}\left(1\right)+A^{4}{}\left(1\right);ElementsCartan=\begin{pmatrix}4 & 8 & 10 & 10 & 5\\ 2 & 0 & 0 & 2 & 2 \end{pmatrix};generators=\left(g{}\left(-19\right)+g{}\left(-14\right)+g{}\left(-15\right), g{}\left(19\right)+2 g{}\left(14\right)+2 g{}\left(15\right), g{}\left(-1\right)+g{}\left(-5\right)+g{}\left(-13\right), g{}\left(1\right)+g{}\left(5\right)+g{}\left(13\right)\right)), (DynkinType=A^{10}{}\left(1\right)+A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}6 & 8 & 8 & 8 & 4\\ 0 & 0 & 2 & 2 & 1 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-23\right), 3 g{}\left(1\right)+4 g{}\left(23\right), g{}\left(-19\right), g{}\left(19\right)\right)), (DynkinType=A^{10}{}\left(1\right)+A^{2}{}\left(1\right);ElementsCartan=\begin{pmatrix}6 & 8 & 8 & 8 & 4\\ 0 & 0 & 2 & 4 & 2 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-23\right), 3 g{}\left(1\right)+4 g{}\left(23\right), g{}\left(-16\right), g{}\left(16\right)\right)), (DynkinType=A^{10}{}\left(1\right)+A^{3}{}\left(1\right);ElementsCartan=\begin{pmatrix}4 & 8 & 10 & 12 & 6\\ 2 & 0 & 0 & 0 & 1 \end{pmatrix};generators=\left(g{}\left(-16\right)+g{}\left(-14\right)+g{}\left(-15\right), g{}\left(16\right)+2 g{}\left(14\right)+2 g{}\left(15\right), g{}\left(-1\right)+g{}\left(-5\right), g{}\left(1\right)+g{}\left(5\right)\right)), (DynkinType=A^{10}{}\left(1\right)+A^{3}{}\left(1\right);ElementsCartan=\begin{pmatrix}6 & 8 & 8 & 8 & 4\\ 0 & 0 & 2 & 4 & 3 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-23\right), 3 g{}\left(1\right)+4 g{}\left(23\right), g{}\left(-19\right)+g{}\left(-9\right), g{}\left(19\right)+g{}\left(9\right)\right)), (DynkinType=A^{10}{}\left(1\right)+A^{8}{}\left(1\right);ElementsCartan=\begin{pmatrix}6 & 8 & 8 & 8 & 4\\ 0 & 0 & 4 & 8 & 4 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-23\right), 3 g{}\left(1\right)+4 g{}\left(23\right), g{}\left(-4\right)+g{}\left(-12\right), 2 g{}\left(4\right)+2 g{}\left(12\right)\right)), (DynkinType=2 A^{10}{}\left(1\right);ElementsCartan=\begin{pmatrix}6 & 8 & 8 & 8 & 4\\ 0 & 0 & 6 & 8 & 4 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-23\right), 3 g{}\left(1\right)+4 g{}\left(23\right), g{}\left(-3\right)+g{}\left(-13\right), 3 g{}\left(3\right)+4 g{}\left(13\right)\right)), (DynkinType=A^{11}{}\left(1\right)+A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}6 & 8 & 10 & 10 & 5\\ 0 & 0 & 0 & 2 & 1 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-23\right)+g{}\left(-19\right), 3 g{}\left(1\right)+4 g{}\left(23\right)+g{}\left(19\right), g{}\left(-13\right), g{}\left(13\right)\right)), (DynkinType=A^{11}{}\left(1\right)+A^{2}{}\left(1\right);ElementsCartan=\begin{pmatrix}6 & 8 & 10 & 10 & 5\\ 0 & 0 & 0 & 2 & 2 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-23\right)+g{}\left(-19\right), 3 g{}\left(1\right)+4 g{}\left(23\right)+g{}\left(19\right), g{}\left(-9\right), g{}\left(9\right)\right)), (DynkinType=A^{11}{}\left(1\right)+A^{10}{}\left(1\right);ElementsCartan=\begin{pmatrix}6 & 8 & 10 & 10 & 5\\ 0 & 0 & 0 & 6 & 4 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-23\right)+g{}\left(-19\right), 3 g{}\left(1\right)+4 g{}\left(23\right)+g{}\left(19\right), g{}\left(-4\right)+g{}\left(-5\right), 3 g{}\left(4\right)+4 g{}\left(5\right)\right)), (DynkinType=A^{12}{}\left(1\right)+A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}6 & 8 & 10 & 12 & 6\\ 0 & 0 & 0 & 0 & 1 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-23\right)+g{}\left(-16\right), 3 g{}\left(1\right)+4 g{}\left(23\right)+g{}\left(16\right), g{}\left(-5\right), g{}\left(5\right)\right)), (DynkinType=A^{13}{}\left(1\right)+A^{8}{}\left(1\right);ElementsCartan=\begin{pmatrix}6 & 8 & 10 & 12 & 7\\ 0 & 4 & 4 & 4 & 0 \end{pmatrix};generators=\left(g{}\left(-6\right)+g{}\left(-19\right)+g{}\left(-13\right)+g{}\left(-15\right), 3 g{}\left(6\right)+4 g{}\left(19\right)+g{}\left(13\right)+g{}\left(15\right), g{}\left(-7\right)-g{}\left(-4\right), 2 g{}\left(7\right)-2 g{}\left(4\right)\right)), (DynkinType=A^{18}{}\left(1\right)+A^{3}{}\left(1\right);ElementsCartan=\begin{pmatrix}6 & 10 & 14 & 16 & 8\\ 0 & 2 & 0 & 0 & 1 \end{pmatrix};generators=\left(g{}\left(-10\right)+g{}\left(-11\right)+g{}\left(-12\right)+g{}\left(-13\right), 3 g{}\left(10\right)+2 g{}\left(11\right)+2 g{}\left(12\right)+4 g{}\left(13\right), g{}\left(-2\right)+g{}\left(-5\right), g{}\left(2\right)+g{}\left(5\right)\right)), (DynkinType=A^{20}{}\left(1\right)+A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}6 & 12 & 14 & 16 & 8\\ 0 & 0 & 0 & 0 & 1 \end{pmatrix};generators=\left(g{}\left(-2\right)+g{}\left(-16\right)+g{}\left(-10\right), 3 g{}\left(2\right)+4 g{}\left(16\right)+3 g{}\left(10\right), g{}\left(-5\right), g{}\left(5\right)\right)), (DynkinType=A^{35}{}\left(1\right)+A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}10 & 16 & 18 & 18 & 9\\ 0 & 0 & 0 & 2 & 1 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-2\right)+g{}\left(-19\right), 5 g{}\left(1\right)+8 g{}\left(2\right)+9 g{}\left(19\right), g{}\left(-13\right), g{}\left(13\right)\right)), (DynkinType=A^{35}{}\left(1\right)+A^{2}{}\left(1\right);ElementsCartan=\begin{pmatrix}10 & 16 & 18 & 18 & 9\\ 0 & 0 & 0 & 2 & 2 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-2\right)+g{}\left(-19\right), 5 g{}\left(1\right)+8 g{}\left(2\right)+9 g{}\left(19\right), g{}\left(-9\right), g{}\left(9\right)\right)), (DynkinType=A^{35}{}\left(1\right)+A^{10}{}\left(1\right);ElementsCartan=\begin{pmatrix}10 & 16 & 18 & 18 & 9\\ 0 & 0 & 0 & 6 & 4 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-2\right)+g{}\left(-19\right), 5 g{}\left(1\right)+8 g{}\left(2\right)+9 g{}\left(19\right), g{}\left(-4\right)+g{}\left(-5\right), 3 g{}\left(4\right)+4 g{}\left(5\right)\right)), (DynkinType=A^{36}{}\left(1\right)+A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}10 & 16 & 18 & 20 & 10\\ 0 & 0 & 0 & 0 & 1 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-2\right)+g{}\left(-19\right)+g{}\left(-13\right), 5 g{}\left(1\right)+8 g{}\left(2\right)+9 g{}\left(19\right)+g{}\left(13\right), g{}\left(-5\right), g{}\left(5\right)\right)), (DynkinType=A^{40}{}\left(1\right)+A^{5}{}\left(1\right);ElementsCartan=\begin{pmatrix}8 & 16 & 20 & 24 & 12\\ 2 & 0 & 2 & 0 & 1 \end{pmatrix};generators=\left(g{}\left(-6\right)+g{}\left(-7\right)+g{}\left(-8\right)+g{}\left(-9\right), 4 g{}\left(6\right)+4 g{}\left(7\right)+6 g{}\left(8\right)+6 g{}\left(9\right), g{}\left(-1\right)+g{}\left(-3\right)+g{}\left(-5\right), g{}\left(1\right)+g{}\left(3\right)+g{}\left(5\right)\right)), (DynkinType=A^{84}{}\left(1\right)+A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}14 & 24 & 30 & 32 & 16\\ 0 & 0 & 0 & 0 & 1 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-2\right)+g{}\left(-3\right)+g{}\left(-13\right), 7 g{}\left(1\right)+12 g{}\left(2\right)+15 g{}\left(3\right)+16 g{}\left(13\right), g{}\left(-5\right), g{}\left(5\right)\right)), (DynkinType=B^{1}{}\left(2\right);ElementsCartan=\begin{pmatrix}2 & 2 & 2 & 2 & 1\\ -2 & 0 & 0 & 0 & 0 \end{pmatrix};generators=\left(g{}\left(-25\right), g{}\left(25\right), g{}\left(1\right), g{}\left(-1\right)\right)), (DynkinType=A^{2}{}\left(2\right);ElementsCartan=\begin{pmatrix}2 & 4 & 4 & 4 & 2\\ 0 & -2 & 0 & 0 & 0 \end{pmatrix};generators=\left(g{}\left(-24\right), g{}\left(24\right), g{}\left(2\right), g{}\left(-2\right)\right)), (DynkinType=B^{2}{}\left(2\right);ElementsCartan=\begin{pmatrix}2 & 4 & 4 & 4 & 2\\ -2 & -4 & -2 & 0 & 0 \end{pmatrix};generators=\left(g{}\left(-24\right), g{}\left(24\right), g{}\left(10\right)+g{}\left(2\right), g{}\left(-10\right)+g{}\left(-2\right)\right)), (DynkinType=B^{4}{}\left(2\right);ElementsCartan=\begin{pmatrix}2 & 4 & 6 & 8 & 4\\ 0 & 0 & -4 & -8 & -4 \end{pmatrix};generators=\left(g{}\left(-18\right)+g{}\left(-22\right), g{}\left(18\right)+g{}\left(22\right), g{}\left(12\right)+g{}\left(4\right), 2 g{}\left(-12\right)+2 g{}\left(-4\right)\right)), (DynkinType=3 A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 2 & 2 & 2 & 1\\ 0 & 2 & 2 & 2 & 1\\ 0 & 0 & 2 & 2 & 1 \end{pmatrix};generators=\left(g{}\left(-25\right), g{}\left(25\right), g{}\left(-23\right), g{}\left(23\right), g{}\left(-19\right), g{}\left(19\right)\right)), (DynkinType=A^{2}{}\left(1\right)+2 A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 4 & 4 & 4 & 2\\ 0 & 0 & 2 & 2 & 1\\ 0 & 0 & 0 & 2 & 1 \end{pmatrix};generators=\left(g{}\left(-24\right), g{}\left(24\right), g{}\left(-19\right), g{}\left(19\right), g{}\left(-13\right), g{}\left(13\right)\right)), (DynkinType=2 A^{2}{}\left(1\right)+A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 4 & 4 & 4 & 2\\ 0 & 0 & 2 & 4 & 2\\ 0 & 0 & 0 & 0 & 1 \end{pmatrix};generators=\left(g{}\left(-24\right), g{}\left(24\right), g{}\left(-16\right), g{}\left(16\right), g{}\left(-5\right), g{}\left(5\right)\right)), (DynkinType=A^{3}{}\left(1\right)+2 A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 4 & 6 & 6 & 3\\ 0 & 0 & 0 & 2 & 1\\ 0 & 0 & 0 & 0 & 1 \end{pmatrix};generators=\left(g{}\left(-19\right)+g{}\left(-24\right), g{}\left(19\right)+g{}\left(24\right), g{}\left(-13\right), g{}\left(13\right), g{}\left(-5\right), g{}\left(5\right)\right)), (DynkinType=2 A^{4}{}\left(1\right)+A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 4 & 6 & 8 & 4\\ 2 & 4 & 2 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 \end{pmatrix};generators=\left(g{}\left(-21\right)+g{}\left(-20\right), g{}\left(21\right)+g{}\left(20\right), g{}\left(-7\right)-g{}\left(-6\right), g{}\left(7\right)-g{}\left(6\right), g{}\left(-5\right), g{}\left(5\right)\right)), (DynkinType=3 A^{4}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 4 & 6 & 8 & 4\\ 2 & 4 & 2 & 0 & 0\\ 2 & 0 & 2 & 0 & 0 \end{pmatrix};generators=\left(g{}\left(-21\right)+g{}\left(-20\right), g{}\left(21\right)+g{}\left(20\right), g{}\left(-7\right)-g{}\left(-6\right), g{}\left(7\right)-g{}\left(6\right), -g{}\left(-1\right)+g{}\left(-3\right), -g{}\left(1\right)+g{}\left(3\right)\right)), (DynkinType=A^{5}{}\left(1\right)+2 A^{4}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 4 & 6 & 8 & 5\\ 2 & 4 & 4 & 2 & 0\\ 2 & 0 & 0 & 2 & 0 \end{pmatrix};generators=\left(g{}\left(-19\right)+g{}\left(-17\right)+g{}\left(-18\right), g{}\left(19\right)+g{}\left(17\right)+g{}\left(18\right), g{}\left(-11\right)-g{}\left(-10\right), g{}\left(11\right)-g{}\left(10\right), -g{}\left(-1\right)+g{}\left(-4\right), -g{}\left(1\right)+g{}\left(4\right)\right)), (DynkinType=A^{8}{}\left(1\right)+2 A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}4 & 8 & 8 & 8 & 4\\ 0 & 0 & 2 & 2 & 1\\ 0 & 0 & 0 & 2 & 1 \end{pmatrix};generators=\left(g{}\left(-17\right)+g{}\left(-11\right), 2 g{}\left(17\right)+2 g{}\left(11\right), g{}\left(-19\right), g{}\left(19\right), g{}\left(-13\right), g{}\left(13\right)\right)), (DynkinType=A^{8}{}\left(1\right)+A^{3}{}\left(1\right)+A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}4 & 8 & 8 & 8 & 4\\ 2 & 0 & 2 & 2 & 1\\ 0 & 0 & 0 & 2 & 1 \end{pmatrix};generators=\left(g{}\left(-6\right)+g{}\left(-21\right), 2 g{}\left(6\right)+2 g{}\left(21\right), g{}\left(-1\right)+g{}\left(-19\right), g{}\left(1\right)+g{}\left(19\right), g{}\left(-13\right), g{}\left(13\right)\right)), (DynkinType=A^{8}{}\left(1\right)+A^{3}{}\left(1\right)+A^{2}{}\left(1\right);ElementsCartan=\begin{pmatrix}4 & 8 & 8 & 8 & 4\\ 2 & 0 & 2 & 2 & 1\\ 0 & 0 & 0 & 2 & 2 \end{pmatrix};generators=\left(g{}\left(-6\right)+g{}\left(-21\right), 2 g{}\left(6\right)+2 g{}\left(21\right), g{}\left(-1\right)+g{}\left(-19\right), g{}\left(1\right)+g{}\left(19\right), g{}\left(-9\right), g{}\left(9\right)\right)), (DynkinType=A^{8}{}\left(1\right)+A^{4}{}\left(1\right)+A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}4 & 8 & 8 & 8 & 4\\ 2 & 0 & 2 & 4 & 2\\ 0 & 0 & 0 & 0 & 1 \end{pmatrix};generators=\left(g{}\left(-18\right)+g{}\left(-10\right), 2 g{}\left(18\right)+2 g{}\left(10\right), g{}\left(-1\right)+g{}\left(-13\right)+g{}\left(-19\right), g{}\left(1\right)+g{}\left(13\right)+g{}\left(19\right), g{}\left(-5\right), g{}\left(5\right)\right)), (DynkinType=A^{9}{}\left(1\right)+A^{3}{}\left(1\right)+A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}4 & 8 & 10 & 10 & 5\\ 2 & 0 & 0 & 2 & 1\\ 0 & 0 & 0 & 0 & 1 \end{pmatrix};generators=\left(g{}\left(-10\right)+g{}\left(-18\right)+g{}\left(-19\right), 2 g{}\left(10\right)+2 g{}\left(18\right)+g{}\left(19\right), g{}\left(-1\right)+g{}\left(-13\right), g{}\left(1\right)+g{}\left(13\right), g{}\left(-5\right), g{}\left(5\right)\right)), (DynkinType=A^{10}{}\left(1\right)+2 A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}6 & 8 & 8 & 8 & 4\\ 0 & 0 & 2 & 2 & 1\\ 0 & 0 & 0 & 2 & 1 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-23\right), 3 g{}\left(1\right)+4 g{}\left(23\right), g{}\left(-19\right), g{}\left(19\right), g{}\left(-13\right), g{}\left(13\right)\right)), (DynkinType=A^{10}{}\left(1\right)+A^{2}{}\left(1\right)+A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}6 & 8 & 8 & 8 & 4\\ 0 & 0 & 2 & 4 & 2\\ 0 & 0 & 0 & 0 & 1 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-23\right), 3 g{}\left(1\right)+4 g{}\left(23\right), g{}\left(-16\right), g{}\left(16\right), g{}\left(-5\right), g{}\left(5\right)\right)), (DynkinType=A^{10}{}\left(1\right)+A^{8}{}\left(1\right)+A^{3}{}\left(1\right);ElementsCartan=\begin{pmatrix}6 & 8 & 8 & 8 & 4\\ 0 & 0 & 4 & 8 & 4\\ 0 & 0 & 2 & 0 & 1 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-23\right), 3 g{}\left(1\right)+4 g{}\left(23\right), g{}\left(-8\right)+g{}\left(-9\right), 2 g{}\left(8\right)+2 g{}\left(9\right), g{}\left(-3\right)+g{}\left(-5\right), g{}\left(3\right)+g{}\left(5\right)\right)), (DynkinType=2 A^{10}{}\left(1\right)+A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}6 & 8 & 8 & 8 & 4\\ 0 & 0 & 6 & 8 & 4\\ 0 & 0 & 0 & 0 & 1 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-23\right), 3 g{}\left(1\right)+4 g{}\left(23\right), g{}\left(-3\right)+g{}\left(-13\right), 3 g{}\left(3\right)+4 g{}\left(13\right), g{}\left(-5\right), g{}\left(5\right)\right)), (DynkinType=A^{11}{}\left(1\right)+2 A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}6 & 8 & 10 & 10 & 5\\ 0 & 0 & 0 & 2 & 1\\ 0 & 0 & 0 & 0 & 1 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-23\right)+g{}\left(-19\right), 3 g{}\left(1\right)+4 g{}\left(23\right)+g{}\left(19\right), g{}\left(-13\right), g{}\left(13\right), g{}\left(-5\right), g{}\left(5\right)\right)), (DynkinType=A^{35}{}\left(1\right)+2 A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}10 & 16 & 18 & 18 & 9\\ 0 & 0 & 0 & 2 & 1\\ 0 & 0 & 0 & 0 & 1 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-2\right)+g{}\left(-19\right), 5 g{}\left(1\right)+8 g{}\left(2\right)+9 g{}\left(19\right), g{}\left(-13\right), g{}\left(13\right), g{}\left(-5\right), g{}\left(5\right)\right)), (DynkinType=B^{1}{}\left(2\right)+A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 2 & 2 & 2 & 1\\ -2 & 0 & 0 & 0 & 0\\ 0 & 0 & 2 & 2 & 1 \end{pmatrix};generators=\left(g{}\left(-25\right), g{}\left(25\right), g{}\left(1\right), g{}\left(-1\right), g{}\left(-19\right), g{}\left(19\right)\right)), (DynkinType=B^{1}{}\left(2\right)+A^{2}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 2 & 2 & 2 & 1\\ -2 & 0 & 0 & 0 & 0\\ 0 & 0 & 2 & 4 & 2 \end{pmatrix};generators=\left(g{}\left(-25\right), g{}\left(25\right), g{}\left(1\right), g{}\left(-1\right), g{}\left(-16\right), g{}\left(16\right)\right)), (DynkinType=B^{1}{}\left(2\right)+A^{3}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 2 & 2 & 2 & 1\\ -2 & 0 & 0 & 0 & 0\\ 0 & 0 & 2 & 4 & 3 \end{pmatrix};generators=\left(g{}\left(-25\right), g{}\left(25\right), g{}\left(1\right), g{}\left(-1\right), g{}\left(-19\right)+g{}\left(-9\right), g{}\left(19\right)+g{}\left(9\right)\right)), (DynkinType=B^{1}{}\left(2\right)+A^{8}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 2 & 2 & 2 & 1\\ -2 & 0 & 0 & 0 & 0\\ 0 & 0 & 4 & 8 & 4 \end{pmatrix};generators=\left(g{}\left(-25\right), g{}\left(25\right), g{}\left(1\right), g{}\left(-1\right), g{}\left(-4\right)+g{}\left(-12\right), 2 g{}\left(4\right)+2 g{}\left(12\right)\right)), (DynkinType=B^{1}{}\left(2\right)+A^{10}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 2 & 2 & 2 & 1\\ -2 & 0 & 0 & 0 & 0\\ 0 & 0 & 6 & 8 & 4 \end{pmatrix};generators=\left(g{}\left(-25\right), g{}\left(25\right), g{}\left(1\right), g{}\left(-1\right), g{}\left(-3\right)+g{}\left(-13\right), 3 g{}\left(3\right)+4 g{}\left(13\right)\right)), (DynkinType=B^{1}{}\left(2\right)+A^{11}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 2 & 2 & 2 & 1\\ -2 & 0 & 0 & 0 & 0\\ 0 & 0 & 6 & 8 & 5 \end{pmatrix};generators=\left(g{}\left(-25\right), g{}\left(25\right), g{}\left(1\right), g{}\left(-1\right), g{}\left(-3\right)+g{}\left(-5\right)+g{}\left(-13\right), 3 g{}\left(3\right)+g{}\left(5\right)+4 g{}\left(13\right)\right)), (DynkinType=B^{1}{}\left(2\right)+A^{35}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 2 & 2 & 2 & 1\\ -2 & 0 & 0 & 0 & 0\\ 0 & 0 & 10 & 16 & 9 \end{pmatrix};generators=\left(g{}\left(-25\right), g{}\left(25\right), g{}\left(1\right), g{}\left(-1\right), g{}\left(-3\right)+g{}\left(-4\right)+g{}\left(-5\right), 5 g{}\left(3\right)+8 g{}\left(4\right)+9 g{}\left(5\right)\right)), (DynkinType=A^{2}{}\left(2\right)+A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 4 & 4 & 4 & 2\\ 0 & -2 & 0 & 0 & 0\\ 0 & 0 & 0 & 2 & 1 \end{pmatrix};generators=\left(g{}\left(-24\right), g{}\left(24\right), g{}\left(2\right), g{}\left(-2\right), g{}\left(-13\right), g{}\left(13\right)\right)), (DynkinType=A^{2}{}\left(2\right)+A^{2}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 4 & 4 & 4 & 2\\ 0 & -2 & 0 & 0 & 0\\ 0 & 0 & 0 & 2 & 2 \end{pmatrix};generators=\left(g{}\left(-24\right), g{}\left(24\right), g{}\left(2\right), g{}\left(-2\right), g{}\left(-9\right), g{}\left(9\right)\right)), (DynkinType=A^{2}{}\left(2\right)+A^{10}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 4 & 4 & 4 & 2\\ 0 & -2 & 0 & 0 & 0\\ 0 & 0 & 0 & 6 & 4 \end{pmatrix};generators=\left(g{}\left(-24\right), g{}\left(24\right), g{}\left(2\right), g{}\left(-2\right), g{}\left(-4\right)+g{}\left(-5\right), 3 g{}\left(4\right)+4 g{}\left(5\right)\right)), (DynkinType=B^{2}{}\left(2\right)+A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 4 & 4 & 4 & 2\\ -2 & -4 & -2 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 \end{pmatrix};generators=\left(g{}\left(-24\right), g{}\left(24\right), g{}\left(10\right)+g{}\left(2\right), g{}\left(-10\right)+g{}\left(-2\right), g{}\left(-5\right), g{}\left(5\right)\right)), (DynkinType=B^{4}{}\left(2\right)+A^{5}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 4 & 6 & 8 & 4\\ 0 & 0 & -4 & -8 & -4\\ 2 & 0 & 2 & 0 & 1 \end{pmatrix};generators=\left(g{}\left(-20\right)+g{}\left(-21\right), g{}\left(20\right)+g{}\left(21\right), g{}\left(9\right)+g{}\left(8\right), 2 g{}\left(-9\right)+2 g{}\left(-8\right), g{}\left(-1\right)-g{}\left(-3\right)-g{}\left(-5\right), g{}\left(1\right)-g{}\left(3\right)-g{}\left(5\right)\right)), (DynkinType=C^{1}{}\left(3\right);ElementsCartan=\begin{pmatrix}2 & 4 & 4 & 4 & 2\\ 0 & -2 & 0 & 0 & 0\\ 0 & 0 & -2 & -2 & -1 \end{pmatrix};generators=\left(g{}\left(-24\right), g{}\left(24\right), g{}\left(2\right), g{}\left(-2\right), g{}\left(19\right), g{}\left(-19\right)\right)), (DynkinType=A^{2}{}\left(3\right);ElementsCartan=\begin{pmatrix}2 & 4 & 4 & 4 & 2\\ 0 & -2 & 0 & 0 & 0\\ 0 & 0 & -2 & 0 & 0 \end{pmatrix};generators=\left(g{}\left(-24\right), g{}\left(24\right), g{}\left(2\right), g{}\left(-2\right), g{}\left(3\right), g{}\left(-3\right)\right)), (DynkinType=4 A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 2 & 2 & 2 & 1\\ 0 & 2 & 2 & 2 & 1\\ 0 & 0 & 2 & 2 & 1\\ 0 & 0 & 0 & 2 & 1 \end{pmatrix};generators=\left(g{}\left(-25\right), g{}\left(25\right), g{}\left(-23\right), g{}\left(23\right), g{}\left(-19\right), g{}\left(19\right), g{}\left(-13\right), g{}\left(13\right)\right)), (DynkinType=A^{2}{}\left(1\right)+3 A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 4 & 4 & 4 & 2\\ 0 & 0 & 2 & 2 & 1\\ 0 & 0 & 0 & 2 & 1\\ 0 & 0 & 0 & 0 & 1 \end{pmatrix};generators=\left(g{}\left(-24\right), g{}\left(24\right), g{}\left(-19\right), g{}\left(19\right), g{}\left(-13\right), g{}\left(13\right), g{}\left(-5\right), g{}\left(5\right)\right)), (DynkinType=3 A^{4}{}\left(1\right)+A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 4 & 6 & 8 & 4\\ 2 & 4 & 2 & 0 & 0\\ 2 & 0 & 2 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 \end{pmatrix};generators=\left(g{}\left(-21\right)+g{}\left(-20\right), g{}\left(21\right)+g{}\left(20\right), g{}\left(-7\right)-g{}\left(-6\right), g{}\left(7\right)-g{}\left(6\right), -g{}\left(-1\right)+g{}\left(-3\right), -g{}\left(1\right)+g{}\left(3\right), g{}\left(-5\right), g{}\left(5\right)\right)), (DynkinType=A^{8}{}\left(1\right)+A^{3}{}\left(1\right)+2 A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}4 & 8 & 8 & 8 & 4\\ 2 & 0 & 2 & 2 & 1\\ 0 & 0 & 0 & 2 & 1\\ 0 & 0 & 0 & 0 & 1 \end{pmatrix};generators=\left(g{}\left(-6\right)+g{}\left(-21\right), 2 g{}\left(6\right)+2 g{}\left(21\right), g{}\left(-1\right)+g{}\left(-19\right), g{}\left(1\right)+g{}\left(19\right), g{}\left(-13\right), g{}\left(13\right), g{}\left(-5\right), g{}\left(5\right)\right)), (DynkinType=A^{10}{}\left(1\right)+3 A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}6 & 8 & 8 & 8 & 4\\ 0 & 0 & 2 & 2 & 1\\ 0 & 0 & 0 & 2 & 1\\ 0 & 0 & 0 & 0 & 1 \end{pmatrix};generators=\left(g{}\left(-1\right)+g{}\left(-23\right), 3 g{}\left(1\right)+4 g{}\left(23\right), g{}\left(-19\right), g{}\left(19\right), g{}\left(-13\right), g{}\left(13\right), g{}\left(-5\right), g{}\left(5\right)\right)), (DynkinType=B^{1}{}\left(2\right)+2 A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 2 & 2 & 2 & 1\\ -2 & 0 & 0 & 0 & 0\\ 0 & 0 & 2 & 2 & 1\\ 0 & 0 & 0 & 2 & 1 \end{pmatrix};generators=\left(g{}\left(-25\right), g{}\left(25\right), g{}\left(1\right), g{}\left(-1\right), g{}\left(-19\right), g{}\left(19\right), g{}\left(-13\right), g{}\left(13\right)\right)), (DynkinType=B^{1}{}\left(2\right)+A^{2}{}\left(1\right)+A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 2 & 2 & 2 & 1\\ -2 & 0 & 0 & 0 & 0\\ 0 & 0 & 2 & 4 & 2\\ 0 & 0 & 0 & 0 & 1 \end{pmatrix};generators=\left(g{}\left(-25\right), g{}\left(25\right), g{}\left(1\right), g{}\left(-1\right), g{}\left(-16\right), g{}\left(16\right), g{}\left(-5\right), g{}\left(5\right)\right)), (DynkinType=B^{1}{}\left(2\right)+A^{8}{}\left(1\right)+A^{3}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 2 & 2 & 2 & 1\\ -2 & 0 & 0 & 0 & 0\\ 0 & 0 & 4 & 8 & 4\\ 0 & 0 & 2 & 0 & 1 \end{pmatrix};generators=\left(g{}\left(-25\right), g{}\left(25\right), g{}\left(1\right), g{}\left(-1\right), g{}\left(-8\right)+g{}\left(-9\right), 2 g{}\left(8\right)+2 g{}\left(9\right), g{}\left(-3\right)+g{}\left(-5\right), g{}\left(3\right)+g{}\left(5\right)\right)), (DynkinType=B^{1}{}\left(2\right)+A^{10}{}\left(1\right)+A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 2 & 2 & 2 & 1\\ -2 & 0 & 0 & 0 & 0\\ 0 & 0 & 6 & 8 & 4\\ 0 & 0 & 0 & 0 & 1 \end{pmatrix};generators=\left(g{}\left(-25\right), g{}\left(25\right), g{}\left(1\right), g{}\left(-1\right), g{}\left(-3\right)+g{}\left(-13\right), 3 g{}\left(3\right)+4 g{}\left(13\right), g{}\left(-5\right), g{}\left(5\right)\right)), (DynkinType=2 B^{1}{}\left(2\right);ElementsCartan=\begin{pmatrix}2 & 2 & 2 & 2 & 1\\ -2 & 0 & 0 & 0 & 0\\ 0 & 0 & 2 & 2 & 1\\ 0 & 0 & -2 & 0 & 0 \end{pmatrix};generators=\left(g{}\left(-25\right), g{}\left(25\right), g{}\left(1\right), g{}\left(-1\right), g{}\left(-19\right), g{}\left(19\right), g{}\left(3\right), g{}\left(-3\right)\right)), (DynkinType=A^{2}{}\left(2\right)+2 A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 4 & 4 & 4 & 2\\ 0 & -2 & 0 & 0 & 0\\ 0 & 0 & 0 & 2 & 1\\ 0 & 0 & 0 & 0 & 1 \end{pmatrix};generators=\left(g{}\left(-24\right), g{}\left(24\right), g{}\left(2\right), g{}\left(-2\right), g{}\left(-13\right), g{}\left(13\right), g{}\left(-5\right), g{}\left(5\right)\right)), (DynkinType=A^{2}{}\left(2\right)+B^{1}{}\left(2\right);ElementsCartan=\begin{pmatrix}2 & 4 & 4 & 4 & 2\\ 0 & -2 & 0 & 0 & 0\\ 0 & 0 & 0 & 2 & 1\\ 0 & 0 & 0 & -2 & 0 \end{pmatrix};generators=\left(g{}\left(-24\right), g{}\left(24\right), g{}\left(2\right), g{}\left(-2\right), g{}\left(-13\right), g{}\left(13\right), g{}\left(4\right), g{}\left(-4\right)\right)), (DynkinType=C^{1}{}\left(3\right)+A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 4 & 4 & 4 & 2\\ 0 & -2 & 0 & 0 & 0\\ 0 & 0 & -2 & -2 & -1\\ 0 & 0 & 0 & 2 & 1 \end{pmatrix};generators=\left(g{}\left(-24\right), g{}\left(24\right), g{}\left(2\right), g{}\left(-2\right), g{}\left(19\right), g{}\left(-19\right), g{}\left(-13\right), g{}\left(13\right)\right)), (DynkinType=C^{1}{}\left(3\right)+A^{2}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 4 & 4 & 4 & 2\\ 0 & -2 & 0 & 0 & 0\\ 0 & 0 & -2 & -2 & -1\\ 0 & 0 & 0 & 2 & 2 \end{pmatrix};generators=\left(g{}\left(-24\right), g{}\left(24\right), g{}\left(2\right), g{}\left(-2\right), g{}\left(19\right), g{}\left(-19\right), g{}\left(-9\right), g{}\left(9\right)\right)), (DynkinType=C^{1}{}\left(3\right)+A^{10}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 4 & 4 & 4 & 2\\ 0 & -2 & 0 & 0 & 0\\ 0 & 0 & -2 & -2 & -1\\ 0 & 0 & 0 & 6 & 4 \end{pmatrix};generators=\left(g{}\left(-24\right), g{}\left(24\right), g{}\left(2\right), g{}\left(-2\right), g{}\left(19\right), g{}\left(-19\right), g{}\left(-4\right)+g{}\left(-5\right), 3 g{}\left(4\right)+4 g{}\left(5\right)\right)), (DynkinType=A^{2}{}\left(3\right)+A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 4 & 4 & 4 & 2\\ 0 & -2 & 0 & 0 & 0\\ 0 & 0 & -2 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 \end{pmatrix};generators=\left(g{}\left(-24\right), g{}\left(24\right), g{}\left(2\right), g{}\left(-2\right), g{}\left(3\right), g{}\left(-3\right), g{}\left(-5\right), g{}\left(5\right)\right)), (DynkinType=C^{1}{}\left(4\right);ElementsCartan=\begin{pmatrix}2 & 4 & 4 & 4 & 2\\ 0 & -2 & 0 & 0 & 0\\ 0 & 0 & -2 & 0 & 0\\ 0 & 0 & 0 & -2 & -1 \end{pmatrix};generators=\left(g{}\left(-24\right), g{}\left(24\right), g{}\left(2\right), g{}\left(-2\right), g{}\left(3\right), g{}\left(-3\right), g{}\left(13\right), g{}\left(-13\right)\right)), (DynkinType=A^{2}{}\left(4\right);ElementsCartan=\begin{pmatrix}2 & 4 & 4 & 4 & 2\\ 0 & -2 & 0 & 0 & 0\\ 0 & 0 & -2 & 0 & 0\\ 0 & 0 & 0 & -2 & 0 \end{pmatrix};generators=\left(g{}\left(-24\right), g{}\left(24\right), g{}\left(2\right), g{}\left(-2\right), g{}\left(3\right), g{}\left(-3\right), g{}\left(4\right), g{}\left(-4\right)\right)), (DynkinType=5 A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 2 & 2 & 2 & 1\\ 0 & 2 & 2 & 2 & 1\\ 0 & 0 & 2 & 2 & 1\\ 0 & 0 & 0 & 2 & 1\\ 0 & 0 & 0 & 0 & 1 \end{pmatrix};generators=\left(g{}\left(-25\right), g{}\left(25\right), g{}\left(-23\right), g{}\left(23\right), g{}\left(-19\right), g{}\left(19\right), g{}\left(-13\right), g{}\left(13\right), g{}\left(-5\right), g{}\left(5\right)\right)), (DynkinType=B^{1}{}\left(2\right)+3 A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 2 & 2 & 2 & 1\\ -2 & 0 & 0 & 0 & 0\\ 0 & 0 & 2 & 2 & 1\\ 0 & 0 & 0 & 2 & 1\\ 0 & 0 & 0 & 0 & 1 \end{pmatrix};generators=\left(g{}\left(-25\right), g{}\left(25\right), g{}\left(1\right), g{}\left(-1\right), g{}\left(-19\right), g{}\left(19\right), g{}\left(-13\right), g{}\left(13\right), g{}\left(-5\right), g{}\left(5\right)\right)), (DynkinType=2 B^{1}{}\left(2\right)+A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 2 & 2 & 2 & 1\\ -2 & 0 & 0 & 0 & 0\\ 0 & 0 & 2 & 2 & 1\\ 0 & 0 & -2 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 \end{pmatrix};generators=\left(g{}\left(-25\right), g{}\left(25\right), g{}\left(1\right), g{}\left(-1\right), g{}\left(-19\right), g{}\left(19\right), g{}\left(3\right), g{}\left(-3\right), g{}\left(-5\right), g{}\left(5\right)\right)), (DynkinType=C^{1}{}\left(3\right)+2 A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 4 & 4 & 4 & 2\\ 0 & -2 & 0 & 0 & 0\\ 0 & 0 & -2 & -2 & -1\\ 0 & 0 & 0 & 2 & 1\\ 0 & 0 & 0 & 0 & 1 \end{pmatrix};generators=\left(g{}\left(-24\right), g{}\left(24\right), g{}\left(2\right), g{}\left(-2\right), g{}\left(19\right), g{}\left(-19\right), g{}\left(-13\right), g{}\left(13\right), g{}\left(-5\right), g{}\left(5\right)\right)), (DynkinType=C^{1}{}\left(3\right)+B^{1}{}\left(2\right);ElementsCartan=\begin{pmatrix}2 & 4 & 4 & 4 & 2\\ 0 & -2 & 0 & 0 & 0\\ 0 & 0 & -2 & -2 & -1\\ 0 & 0 & 0 & 2 & 1\\ 0 & 0 & 0 & -2 & 0 \end{pmatrix};generators=\left(g{}\left(-24\right), g{}\left(24\right), g{}\left(2\right), g{}\left(-2\right), g{}\left(19\right), g{}\left(-19\right), g{}\left(-13\right), g{}\left(13\right), g{}\left(4\right), g{}\left(-4\right)\right)), (DynkinType=C^{1}{}\left(4\right)+A^{1}{}\left(1\right);ElementsCartan=\begin{pmatrix}2 & 4 & 4 & 4 & 2\\ 0 & -2 & 0 & 0 & 0\\ 0 & 0 & -2 & 0 & 0\\ 0 & 0 & 0 & -2 & -1\\ 0 & 0 & 0 & 0 & 1 \end{pmatrix};generators=\left(g{}\left(-24\right), g{}\left(24\right), g{}\left(2\right), g{}\left(-2\right), g{}\left(3\right), g{}\left(-3\right), g{}\left(13\right), g{}\left(-13\right), g{}\left(-5\right), g{}\left(5\right)\right)), (DynkinType=C^{1}{}\left(5\right);ElementsCartan=\begin{pmatrix}2 & 4 & 4 & 4 & 2\\ 0 & -2 & 0 & 0 & 0\\ 0 & 0 & -2 & 0 & 0\\ 0 & 0 & 0 & -2 & 0\\ 0 & 0 & 0 & 0 & -1 \end{pmatrix};generators=\left(g{}\left(-24\right), g{}\left(24\right), g{}\left(2\right), g{}\left(-2\right), g{}\left(3\right), g{}\left(-3\right), g{}\left(4\right), g{}\left(-4\right), g{}\left(5\right), g{}\left(-5\right)\right))\right))