Let h be in the Cartan subalgebra. Let \(\alpha_1, ..., \alpha_n\) be simple roots with respect to h. Then the h-characteristic, as defined by E. Dynkin, is the n-tuple \((\alpha_1(h), ..., \alpha_n(h))\).
The actual realization of h. The coordinates of h are given with respect to the fixed original simple basis. Note that the h-characteristic is computed using a possibly different simple basis, more precisely, with respect to any h-positive simple basis.
A regular semisimple subalgebra might contain an sl(2) such that the sl(2) has no centralizer in the regular semisimple subalgebra, but the regular semisimple subalgebra might fail to be minimal containing. This happens when another minimal containing regular semisimple subalgebra of equal rank nests as a root subalgebra in the containing SA. See Dynkin, Semisimple Lie subalgebras of semisimple Lie algebras, remark before Theorem 10.4.
The \(sl(2)\) submodules of the ambient Lie algebra are parametrized by their highest weight with respect to the Cartan element h of \(sl(2)\). In turn, the highest weight is a positive integer multiple of the fundamental highest weight \(\psi\). \(V_{l\psi}\) is \(l + 1\)-dimensional.
Type + realization link | h-Characteristic | Realization of h | sl(2)-module decomposition of the ambient Lie algebra \(\psi=\) the fundamental \(sl(2)\)-weight. | Centralizer dimension | Type of semisimple part of centralizer, if known | The square of the length of the weight dual to h. | Dynkin index | Minimal containing regular semisimple SAs | Containing regular semisimple SAs in which the sl(2) has no centralizer |
\(A^{165}_1\) | (2, 2, 2, 2, 2) | (18, 32, 42, 48, 25) | \(V_{18\psi}+V_{14\psi}+V_{10\psi}+V_{6\psi}+V_{2\psi}\)
| 0 | \(\displaystyle 0\) | 330 | 165 | C^{1}_5; | C^{1}_5; |
\(A^{85}_1\) | (2, 2, 2, 0, 2) | (14, 24, 30, 32, 17) | \(V_{14\psi}+V_{10\psi}+V_{8\psi}+2V_{6\psi}+2V_{2\psi}\)
| 0 | \(\displaystyle 0\) | 170 | 85 | C^{1}_5; C^{1}_4+A^{1}_1; | C^{1}_5; C^{1}_4+A^{1}_1; |
\(A^{84}_1\) | (2, 2, 2, 1, 0) | (14, 24, 30, 32, 16) | \(V_{14\psi}+V_{10\psi}+2V_{7\psi}+V_{6\psi}+V_{2\psi}+3V_{0}\)
| 3 | \(\displaystyle A^{1}_1\) | 168 | 84 | C^{1}_4; | C^{1}_4; |
\(A^{45}_1\) | (2, 0, 2, 0, 2) | (10, 16, 22, 24, 13) | \(V_{10\psi}+V_{8\psi}+3V_{6\psi}+V_{4\psi}+3V_{2\psi}\)
| 0 | \(\displaystyle 0\) | 90 | 45 | C^{1}_5; C^{1}_3+B^{1}_2; | C^{1}_5; C^{1}_3+B^{1}_2; |
\(A^{40}_1\) | (0, 2, 0, 2, 0) | (8, 16, 20, 24, 12) | \(3V_{8\psi}+V_{6\psi}+3V_{4\psi}+V_{2\psi}+3V_{0}\)
| 3 | not computed | 80 | 40 | A^{2}_4; | A^{2}_4; |
\(A^{37}_1\) | (2, 2, 0, 0, 2) | (10, 16, 18, 20, 11) | \(V_{10\psi}+3V_{6\psi}+2V_{4\psi}+4V_{2\psi}+V_{0}\)
| 1 | \(\displaystyle 0\) | 74 | 37 | C^{1}_4+A^{1}_1; C^{1}_3+2A^{1}_1; C^{1}_3+A^{2}_1; | C^{1}_4+A^{1}_1; C^{1}_3+2A^{1}_1; C^{1}_3+A^{2}_1; |
\(A^{36}_1\) | (2, 2, 0, 1, 0) | (10, 16, 18, 20, 10) | \(V_{10\psi}+2V_{6\psi}+2V_{5\psi}+V_{4\psi}+2V_{2\psi}+2V_{\psi}+3V_{0}\)
| 3 | \(\displaystyle A^{1}_1\) | 72 | 36 | C^{1}_4; C^{1}_3+A^{1}_1; | C^{1}_4; C^{1}_3+A^{1}_1; |
\(A^{35}_1\) | (2, 2, 1, 0, 0) | (10, 16, 18, 18, 9) | \(V_{10\psi}+V_{6\psi}+4V_{5\psi}+V_{2\psi}+10V_{0}\)
| 10 | \(\displaystyle B^{1}_2\) | 70 | 35 | C^{1}_3; | C^{1}_3; |
\(A^{21}_1\) | (0, 2, 0, 0, 2) | (6, 12, 14, 16, 9) | \(3V_{6\psi}+3V_{4\psi}+6V_{2\psi}+V_{0}\)
| 1 | \(\displaystyle 0\) | 42 | 21 | C^{1}_3+B^{1}_2; 2B^{1}_2+A^{1}_1; A^{2}_3+A^{1}_1; | C^{1}_3+B^{1}_2; 2B^{1}_2+A^{1}_1; A^{2}_3+A^{1}_1; |
\(A^{20}_1\) | (0, 2, 0, 1, 0) | (6, 12, 14, 16, 8) | \(3V_{6\psi}+V_{4\psi}+4V_{3\psi}+3V_{2\psi}+4V_{0}\)
| 4 | \(\displaystyle A^{1}_1\) | 40 | 20 | 2B^{1}_2; A^{2}_3; | 2B^{1}_2; A^{2}_3; |
\(A^{18}_1\) | (1, 0, 1, 1, 0) | (6, 10, 14, 16, 8) | \(V_{6\psi}+2V_{5\psi}+3V_{4\psi}+2V_{3\psi}+2V_{2\psi}+2V_{\psi}+3V_{0}\)
| 3 | not computed | 36 | 18 | A^{2}_2+B^{1}_2; | A^{2}_2+B^{1}_2; |
\(A^{13}_1\) | (2, 0, 0, 0, 2) | (6, 8, 10, 12, 7) | \(V_{6\psi}+3V_{4\psi}+10V_{2\psi}+3V_{0}\)
| 3 | not computed | 26 | 13 | C^{1}_3+2A^{1}_1; B^{1}_2+3A^{1}_1; C^{1}_3+A^{2}_1; B^{1}_2+A^{2}_1+A^{1}_1; | C^{1}_3+2A^{1}_1; B^{1}_2+3A^{1}_1; C^{1}_3+A^{2}_1; B^{1}_2+A^{2}_1+A^{1}_1; |
\(A^{12}_1\) | (2, 0, 0, 1, 0) | (6, 8, 10, 12, 6) | \(V_{6\psi}+2V_{4\psi}+2V_{3\psi}+6V_{2\psi}+4V_{\psi}+4V_{0}\)
| 4 | \(\displaystyle A^{1}_1\) | 24 | 12 | C^{1}_3+A^{1}_1; B^{1}_2+2A^{1}_1; B^{1}_2+A^{2}_1; | C^{1}_3+A^{1}_1; B^{1}_2+2A^{1}_1; B^{1}_2+A^{2}_1; |
\(A^{11}_1\) | (2, 0, 1, 0, 0) | (6, 8, 10, 10, 5) | \(V_{6\psi}+V_{4\psi}+4V_{3\psi}+3V_{2\psi}+4V_{\psi}+10V_{0}\)
| 10 | \(\displaystyle B^{1}_2\) | 22 | 11 | C^{1}_3; B^{1}_2+A^{1}_1; | C^{1}_3; B^{1}_2+A^{1}_1; |
\(A^{10}_1\) | (2, 1, 0, 0, 0) | (6, 8, 8, 8, 4) | \(V_{6\psi}+6V_{3\psi}+V_{2\psi}+21V_{0}\)
| 21 | \(\displaystyle C^{1}_3\) | 20 | 10 | B^{1}_2; | B^{1}_2; |
\(A^{10}_1\) | (0, 1, 0, 1, 0) | (4, 8, 10, 12, 6) | \(3V_{4\psi}+4V_{3\psi}+4V_{2\psi}+4V_{\psi}+4V_{0}\)
| 4 | not computed | 20 | 10 | A^{2}_2+2A^{1}_1; A^{2}_2+A^{2}_1; | A^{2}_2+2A^{1}_1; A^{2}_2+A^{2}_1; |
\(A^{9}_1\) | (0, 1, 1, 0, 0) | (4, 8, 10, 10, 5) | \(3V_{4\psi}+2V_{3\psi}+6V_{2\psi}+4V_{\psi}+6V_{0}\)
| 6 | not computed | 18 | 9 | A^{2}_2+A^{1}_1; | A^{2}_2+A^{1}_1; |
\(A^{8}_1\) | (0, 2, 0, 0, 0) | (4, 8, 8, 8, 4) | \(3V_{4\psi}+9V_{2\psi}+13V_{0}\)
| 13 | not computed | 16 | 8 | A^{2}_2; | A^{2}_2; |
\(A^{5}_1\) | (0, 0, 0, 0, 2) | (2, 4, 6, 8, 5) | \(15V_{2\psi}+10V_{0}\)
| 10 | not computed | 10 | 5 | 5A^{1}_1; A^{2}_1+3A^{1}_1; 2A^{2}_1+A^{1}_1; | 5A^{1}_1; A^{2}_1+3A^{1}_1; 2A^{2}_1+A^{1}_1; |
\(A^{4}_1\) | (0, 0, 0, 1, 0) | (2, 4, 6, 8, 4) | \(10V_{2\psi}+8V_{\psi}+9V_{0}\)
| 9 | not computed | 8 | 4 | 4A^{1}_1; A^{2}_1+2A^{1}_1; 2A^{2}_1; | 4A^{1}_1; A^{2}_1+2A^{1}_1; 2A^{2}_1; |
\(A^{3}_1\) | (0, 0, 1, 0, 0) | (2, 4, 6, 6, 3) | \(6V_{2\psi}+12V_{\psi}+13V_{0}\)
| 13 | not computed | 6 | 3 | 3A^{1}_1; A^{2}_1+A^{1}_1; | 3A^{1}_1; A^{2}_1+A^{1}_1; |
\(A^{2}_1\) | (0, 1, 0, 0, 0) | (2, 4, 4, 4, 2) | \(3V_{2\psi}+12V_{\psi}+22V_{0}\)
| 22 | \(\displaystyle C^{1}_3\) | 4 | 2 | 2A^{1}_1; A^{2}_1; | 2A^{1}_1; A^{2}_1; |
\(A^{1}_1\) | (1, 0, 0, 0, 0) | (2, 2, 2, 2, 1) | \(V_{2\psi}+8V_{\psi}+36V_{0}\)
| 36 | \(\displaystyle C^{1}_4\) | 2 | 1 | A^{1}_1; | A^{1}_1; |